搜尋結果
查詢
���共找到
14829筆。
如查無相關資訊,可至
進階搜尋
進行查詢
本研究統計台灣被子植物中翅果及似翅果植物共33科55屬110種,雙子葉植物佔27科48屬91種,單子葉植物佔6科7屬19種,固有種共31種。所蒐集的55種植物中,似翅果植物共20種,其中具翅角果有獨行菜、車桑子;具翅蒴果有台灣前胡、台灣芎窮、蘭嶼秋海棠、水鴨腳、台灣秋海棠、昂天蓮、獨黃、戟葉田薯;翅狀物由萼片發育而成有登吉紅柳桉;由苞片發育而成有黃杞、禿敗醬、毛敗醬、台灣敗醬、楓楊;由花被片發育而成有虎杖、台灣何首烏、琉球水玉簪;由心皮發育而成有青桐,其餘35種為典型的翅果。統計台灣具翅散殖體植物共60科120屬207種,約佔台灣維管束植物的5 % 左右。其中,梧桐科與薯蕷科科內同時擁有具翅果實及具翅種子。將已拍照的143種具翅植物分類,分為立體翅與平面翅。果實中具3枚以上翅狀物呈立體者有20種,而具翅種子植物僅具平面翅。平面翅中具雙翅者共6種,具頂生翅者共20種,具側生翅者共12種,果實與種子皆以環生翅居多,共85種。此85種植物中,蘿藦科與夾竹桃科大錦蘭的種子亦具有種髮,而此特徵是具翅果實所沒有的。
> 更多
科展作品檢索
台灣地區青少年體表面積與相關生活因子之研究
人體表面積在醫學的應用相當重要:燒燙傷的評估是以全身面積被灼傷的百分比 表示;營養狀況的評估,新陳代謝率也以單位表面積表示之;體液或藥物之需求量也 是以體表面積來決定劑量;然而人體是一不規則物體,應用一般幾何面積計算公式有 其困難處,如何快速的計算人體表面積,以作為醫療的指引,有其必要性。而青少年 正處於快速發育期,各部位的成長是否會影響表面積的計算,由於目前鮮少對青少年 之專文報告,尤其缺乏台灣地區之調查。為了探索這些問題,乃進行調查與研究。 本研究以台灣地區國民中小學10 至15 歲青少年為對象,探討在此發育期間體格 之變化及可能之影響相關因子,並建立體表面積之快速計算公式。本研究隨機取樣以 1209 人形成樣本,其中男生623 人,女生586 人,利用尺秤,取得身體各部位的資料, 並以問卷調查運動、飲食與睡眠等問題,以探討影響此成長期發育之因子。結果發現: 台灣青少年體表面積快速計算公式為(身高x 體重 ÷37)0.5;其體表面積九分法計算方 式也有別於一般歐美成年人的計算法;及此年齡層的身高與體重受運動的頻率、運動 持久性、飲食習慣多寡的影響,而與運動種類及主食種類相關性不大,這項研究的發 現,將有助於醫護人員對青少年問題的處理。Body Surface Area (BSA) has been used in many clinical conditions to calculate the percentage of burned area, to evaluate the nutrition status - the unit of the metabolic rate, to determine the need of fluid supply or the medicine dosage requirement. So precise measurement of BSA is very important, however the human body is an irregular shape, a laborious task using the geometrical method. To establish a simple quick formula to guide the therapeutic treatment is a necessity. Also the rapid growth phase during the adolescent stage might change the BSA in some way. BSA has not been established for the teenagers in Taiwan. To investigate this issue, a total of 1209 healthy elementary and junior high school boys (623) and girls (586) aged 10 to 15 in Taiwan were recruited by random selection. By use of anthropometrical measurements and a health questionnaire to the subject simultaneously, the data was analyzed statistically. The results revealed that a quick adequate formula derived from the body height and weight for Taiwan teenagers was determined by the formula, BSA = [ Height (meter ) x Weight (Kg) ÷37 ] 0.5, the Taiwan teenage “rule of the nine” of BSA is different from that of the adult, and that the frequency and the duration of exercise, the diet habit, and the duration of sleep significantly influence both body growth and weight. These findings may provide significant references for the physicians to treat the clinical conditions of teenagers in Taiwan.
> 更多
科展作品檢索
Nonlinear Time Series Analysis of Electroencephalogram Tracings of Children with Autism
Methods of nonlinear time series analysis were compiled for use in the analysis of Electroencephalogram (EEG) tracings of children aged three to seven with varying degrees of autism in order to provide a quantitative means of diagnosing autism and determining its severity in a child. After determining the EEG leads to be used for analysis, the identified methods were coded and saved as functions on Scilab. To test the compiled program, a minimum of five EEG readings per cluster of children diagnosed with mild, moderate, severe and no autism will be obtained. The project was able to identify the mean, standard deviation, skewness, kurtosis and other higher order moments, the autocorrelation function, and the Fourier Series as the time-resolved statistical methods to be used for time series analysis. The nonlinear analysis methods identified include the use of the correlation integral, time-delay embedding and the Lorenz equations. One-way ANOVA testing will then be used on the numerical data obtained from the analysis to determine if a significant numerical differentiation has been obtained between the different clusters of EEG. This will provide a definitive way to medically diagnose autism, pinpointing children afflicted with the disorder and giving them proper treatment.\r Two copies of the "Abstract of Exhibit" (in English) should be sent to the National Taiwan Science Education Center or email to fung@mail.ntsec.gov.tw or yuonne@mail.ntsec.gov.tw before December 31, 2009.
> 更多
推推樂的連鎖效應遊戲是多數人對骨牌的印象,殊不知骨牌上的點數也可以營造出好玩且具思考性的數學拼組活動,有幸在去年高雄市的科展中看到多米諾骨牌的活動介紹,激發了我們深入探究的動力,因此以骨牌拼組的九宮方陣作為本次研究的主題。本研究將骨牌上的點數改換成數字模式,製作出整組的數字骨牌,進行九宮方陣的拼排,在窮盡所有的組合中,我們歸納出三大組型~對稱型、可逆型及單一型,並分別進行規律的分析與探究。再則,我們也發現同骨同 N 不同組法的骨牌組成元素及同骨不同 N 的骨牌組成元素,並利用自己研發的交錯搭配法來快速研判能否拼組成功。除了九宮方陣外,我們運用九宮方陣的性質延伸設計出更有難度的方連組型及風車組型,並將此本次的研究成果設計成五套益智動腦的遊戲組,讓大家一起來挑戰動腦筋。
> 更多
太陽所產生的光和熱,是帶給地球多采多姿生態的原動力。因為有太陽源源不斷的向地球傳遞能源,植物才得以進行光和作用,將太陽能轉換為自身的養分。而動物再藉由攝取植物,從而得到自身活動所需之能源。所以太陽能可以說是地球上一切生命的基礎。近代環保意識的高漲,使得傳統的火力發電廠與核能發電廠受到嚴格的批評。如果我們加以追根究底,現今的發電廠,除了核能發電廠以外,都可以看做是將既有的太陽能轉換出來而已。聰明的人類很快就想到,既然現在所使用的能源大部分都來自於太陽,那我們為什麼不直接向太陽要能源呢!而這也就是現今太陽能發電的構想。而目前直接轉換太陽能的方式不外有:收集熱能與轉換光能。以收集熱能來說,小規模的民生利用方面,如同現今經常看到的太陽熱水器。較大規模方面則有所謂的集熱式太陽能發電廠,藉著集中太陽能所產生的高熱來使水汽化產生蒸汽,進而推動渦輪發電機產生電力。
> 更多
科展作品檢索
廣鹽性吳郭魚氯離子調節機制- - - NKCC在氯細胞中扮演之角色
本實驗中我們利用廣鹽性吳郭魚進行氯離子調節機制的研究,探討廣鹽性吳郭魚如何能在不同環境中維持體內氯離子恆定,進而適應生存環境。我門想要探討:『是否NKCC 這種蛋白質在淡水吳郭魚MR 細胞中扮演吸收 Cl- 的角色? 如果是,吳郭魚又如何藉NKCC 的調節適應環境中 Cl- 的變化呢?』我們利用細胞免疫螢光染色法、西方墨點法和共軛焦顯微鏡觀察分析NKCC 在不同 Cl- 濃度人工淡水馴養的吳郭魚MR 細胞上的表現量,結果發現 NKCC 分布於頂端細胞膜(又稱為細胞開口),及其附近的細胞質內;環境中 Na+ 濃度的差異對NKCC 在MR 細胞上的表現影響不大,但低 Cl- 環境馴養的吳郭魚,NKCC 表現量都高出其他組很多。顯示NKCC 參與了氯吸收的機制。另一個實驗中,我們將吳郭魚由淡水中轉移至海水以分析它們在適應海水的過程中NKCC 的表現變化。結果發現在馴養初期(16 小時內),圓點狀NKCC 仍然可以在MR 細胞的開口附近觀察到,但到了24 小時後,NKCC 在開口的表現就明顯減少甚至消失,取而代之的是轉移到底側邊細胞膜上的NKCC。此實驗證實了NKCC 這一個與Cl-運送相關的蛋白質,在廣鹽性吳郭魚氯離子調節中扮演了很重要的角色。
Euryhaline tilapia (Oreochromis mossambicus) is capable of maintaining internal ion constant ineither hypertonic or hypotonic environments (fresh water or seawater).MR cells in the gills of tilapia play critical role in absorbing Cl- from fresh water or pumping redundant Cl- from body fluid into seawater. Chloride transporter (NKCC) which distributed in basolateral membrane of MR cells is involved in Cl- secretion of seawater teleost. However, the mechanism of Cl- absorption in fresh water MR cells is still unclear. Whether NKCC is also involved in Cl- absorption and how do tilapia regulate Cl- absorption are the questions this study aim to answer. By using immunofluorescent staining, western blot, and confocal microscopy, the distribution and expression level of NKCC in fresh water MR cells were examined. We found that NKCC is distributed on the apical membrane of freshwater MR cells where is known to be the site for active Cl- absorption of MR cells. We compared the expression level of NKCC in MR cells from tilapia acclimated in high, normal, and low Cl- artificial water for 7 days. The results showed that NKCC is induced by ambient low Cl- , and in contrast suppressed by high Cl- water, indicating NKCC might be involved in Cl- absorption of freshwater MR cells and up-or down-regulated to maintain Cl- uptake constant. In addition, we also examine the expression pattern of NKCC in MR cells from tilapia transferred from fresh water to seawater. Confocal images show that apical expressed NKCC disappear gradually within 24h seawater acclimation and is substituted by basolateral expressed NKCC. This study provides a novel regulatory mechanism of NKCC in Cl- transporter of MR cells.
> 更多
k(2αβ ,α2 ? β2,α2 + β2 )是大家熟悉畢氏定理的通式解,且一般書籍的証明大都採用代數的手法證明。以國中生而言,上述的代數方對國中生來說不夠直接且較無推展的實用性。因此幾何觀點出發發展另一種思考方式,利用角平線的性質給予畢氏定理比例解另一種全新的詮釋,並賦予比例解中的參數α 、β 在幾何的意義。在推理的過程中,我們得到一個相當有用的對應關係:一個有理數對應到一個直角三角形、兩個有理數對應到海倫三角形,再將此對應關係運用到各種幾何圖形上面,即可證明出他們所對應的通式解。最後我的興趣鎖定在海倫三角形、完美海倫多邊形與超完美海倫多邊形上的做圖方法上,善用我們所發展的對應關係,上述的問題皆可迎刃而解。k(2αβ ,α2 ? β2,α2 + β2 ) is a popular formula in Pythagoras Theory, often proved in algebra approach among books. Nevertheless, in light of junior high students, the aforementioned algebra method is neither direct nor practical. Hence, a different thinking method is derived from geometry perspective, using the straight line concept to reinterpret Pythagoras Theory and define the geometric meanings of α andβ . In the process of logical development, a useful correlation emerges: a rational number correlates with a straight-angled triangle, and two rational numbers correlate with Heron Triangle. This correlation can be applied to all kinds of geometrical diagrams to prove the correlated homogenous solution. Ultimately, my interest lies in the diagram methods of Heron Triangle, Perfect Heron Polygon, and Super Perfect Heron Polygon in order to apply our developed correlations to solve the above mentioned problems.
> 更多
最後留下數字會是多少?該問題在台灣的全國中小學科學展覽出現多次。而資訊界演算法大師Donlad E. Knuth 在其著作The Art of Programing,CONCRETE MATHEMATICS (具體數學),針對該數列作詳細的說明;但是,不論是歷屆全國中小學科學展覽或是大師著作,對於該問題,都只是談及殺1 留β或是殺α留1。本研究利用獨創α分類、n 及k 分類、d 函數、b 函數及循環、n 及y 分類、碎形數列和演變關係,將約瑟夫問題探討範圍提升至殺α(個數)留β(個數),直到剩下最後1 個數時就不能再殺了,遊戲終止,倒數第k 個留下的自然數是多少?同時,本研究在殺α(個數)留β(個數)下,指定自然數y 為酋長,酋長不能被殺,殺到酋長時遊戲停止,求剩下的自然數有幾個?會發生什麼情形?The Josephus problem refers to what will be remaining when arranging n natural numbers in a circle and starting killing one and leaving the next one alive. The problem has been on display for many times in Taiwan National Primary and High School Science Exhibitions (as shown in Table 1). And, the information algorithm master, Donald E. Knuth has elaborated on the array in his works The Art of Programming, CONCRETE MATHEMATICS. However, both the past science exhibitions and the master’s works are limited to discussions on cases of killing 1 leaving β or killing α and leaving 1. This research employs uniquely created α classification, n and k classifications, d function, b function and loop theory to extend the Josephus problem scope to killing α leaving β to find out what the remaining natural number is by No. k counted recursively. Meanwhile, this research designates natural number y as the chieftain, which can never be killed. The game is over when the chieftain is to be killed. The problem is to work out how many natural numbers are remaining. And what happened?
> 更多
本次的研究範圍主要以新化丘陵的二重溪層為主,而且所發現的有孔蟲及貝\r 類化石多數位於地層界線帶,我們所研究的有孔蟲種類共有14 種之多,其中分\r 布最廣、密度最高的有孔蟲種類有FBLs 及FBPs.數種,牠們生長在廣鹽性的海\r 域,所以遠在高雄市的岩心(地表以下的地層)也可以發現牠們的蹤跡。在有孔蟲\r 的外型中又以輪型最多,其中FBLs 有部分種類的周圍薄片,是適應大自然的結\r 果(帄衡用)。還有一些有孔蟲呈水帄堆疊,顯示當時的海域環境穩定,都與當時\r 的生態環境息息相關,所以我們終於了解地質學家為何常以有孔蟲化石作為確定\r 地質年代的標準化石和古沉積環境的指相化石了。
> 更多
本研究主要在測試簡易萃取水果DNA的可行性,並比較不同水果之不同部位DNA的萃取量,以及水果的新鮮度、保存溫度、成熟度和成長條件對DNA萃取量的影響。研究發現仁果類水果無法萃取到DNA;大部份漿果類可萃取到較多的DNA;柑果類的果皮DNA多於果肉;而漿果類的果肉DNA多於果皮。從果肉中可以萃取到較多DNA的是火龍果和木瓜;從果皮中可以萃取到較多DNA的是火龍果、橘子和百香果。從種子可以萃取到較多DNA的是哈密瓜。其中以木瓜果肉的DNA萃取效果最好。水果剖開或榨汁氧化後,DNA萃取量會明顯的減少;水果加熱之後DNA的量會增加,冷藏或冷凍後的DNA萃取量則會減少;水果越成熟,DNA的萃取量會越多;在缺少陽光量和水量下生長的水果,DNA的萃取量會減少。
> 更多
科展作品檢索
這不是群體防禦─反駁行為學家對魚群行為的高估
This study is to discuss the reason that interfere the fish schooling behavior " adult fish surround the young fish ". I use mathematic simulation, to observe the result when the fishes are stimulated, due to the body size , the speed of swimming , the difference of sensitivity will make different reaction. We predict the motion dots of fish when the hunter appears on the block paper, then analyzes the motion of adult fish and young fish in dot to determine if the result remind "adult fish surround the young fish "structure. The conclusion shown that natural reaction physiologically on fish will show "Adult fish surround the young fish "results, so, the factor that interfere the structure of fish group is not so called "group defense by ethnologist".本研究目的,在探討影響魚群「成魚圍繞著幼魚游」的行為。本研究是以數學模擬法,依觀察結果,設定魚在受到刺激後,因體型大小、游速的快慢、靈敏度的差異等,所產生的不同的反應。再在方格紙上模擬魚群在捕食者出現時,游開的動線。最後分析成魚幼魚的動線分布情形,是否仍是「成魚游在幼魚外圍」的魚群結構。研究結果發現,依魚類的生理條件所設定的條件下模擬,自然形成「成魚游在幼魚外圍」的魚群結構。所以,影響魚群結構的因素,的確不是行為學家所說的防禦行為。
> 更多
科展作品檢索
紅!藍!用光譜分析探討平衡系與勒沙特列原理暨其能量變化測定實驗之設計
我們知道用氯化亞鈷試紙可以檢驗水的存在,高中化學課本告訴我們氯化亞鈷之稀水溶液為淡粉紅色,去水後即變為深藍色。氯化亞鈷此種性質可用於製造隱形墨水(invisible ink),另一用途為製造天氣預報計。由課本知道了這些氯化亞鈷性質卻不知道其中的原因,在高中化學新教材平衡常數和勒沙特列原理實驗中討論到CrO42-與Cr2O72-顏色變化,所以我們想到氯化亞鈷顏色變化是否也符合勒沙特列原理呢?鈷是過度元素,能夠形成特殊化合物是否與錯離子有關呢?氯化亞鈷水溶液顏色變化是否涉及能量變化?為了徹底了解這些問題以揭開氯化亞鈷顏色變化謎底,所以自行設計此實驗來研究氯化亞鈷水溶液紅藍變化有趣的化學反應。
> 更多