搜尋結果
查詢 ���共找到 14829筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

植物也會發燒嗎?_以仙人掌體內溫度為例

自然課提到環境溫度對動物的影響,我們好奇植物是否也有類似的恆溫或變溫的情形。而沙漠植物的仙人掌在沙漠早晚極端氣溫下,植物體內的溫度變化是否也有相對應的改變呢?我們從探究植物的體內溫度測量開始,進行一連串的觀測 記錄與探究以Microbit解決觀測不便等問題。研究結果發現: 一、仙人掌 體 內溫度 是 會隨外界環境溫度改變的變溫植物 。 二、環境溫度較高時,照光的、乾燥的仙人掌體內溫度較高吹風的仙人掌體內溫度較低。 三、極端高溫下仙人掌的體內溫度具有維持在52℃左右恆溫的現象 。 四、影響仙人掌體內溫度以太陽輻射與熱傳導為主,自身的蒸散作用調節有限。 五、照綠色光的仙人掌比起照白光、藍光、紅光的仙人掌的體內溫度都要低。

> 更多

科展作品檢索

利用Verapamil引發斑馬魚心衰竭模式並探討臨床心衰竭用藥Dapagliflozin和Valsartan之成效與機制

近年來心臟疾病死亡率不斷上升,其中心衰竭是一種常見且高死亡率、高再住院率的心臟疾病,故如何治療並延長患者壽命是相當重要的問題。本研究利用 Verapamil 建立斑馬魚心衰竭模型,並作為疾病模式探討糖尿病藥物 Dapagliflozin 對心衰竭的作用。研究結果顯示,經 Verapamil前處理 4 小時再加入 Dapagliflozin 共處理 20 小時後發現,可以改善心衰竭斑馬魚心室肥大、心輸出量下降和水腫,但功能為滲透壓調節的離子細胞其密度無明顯變化。而心衰竭斑馬魚體內nppa、nppb、gata4、vmhc 這四種在心臟壓力上升時,基因表現量會上升的基因,經 Dapagliflozin處理後無明顯下降。綜上所述,我們推測 Dapagliflozin 可能作用於心臟及腎臟,透過改善心腎功能,排出身體多餘水分,使體液與電解質平衡,改善水腫的同時進而達到改善心衰竭的作用。

> 更多

科展作品檢索

運用主成分分析探尋宇宙中的互繞雙類星體

探尋互繞雙類星體是天文研究中重要的課題,互繞雙類星體是星系合併的產物,也是產生重力波的來源之一,研究其性質能使我們了解星系合併的機制,而光譜是最直接研究的面向。雖然目前已經有大量數據,但相關的研究並不多,雙類星體的性質研究也尚不成熟。在本研究中,我們發展出能從類星體光譜數據中尋找雙類星體的方法,並進一步探究其性質。本研究運用機器學習中的主成分分析(Principal Component Analysis,PCA)擷取雙類星體的特徵光譜,結合PCA係數分析、最鄰近搜索和支援向量機(support vector machine),精準的篩選雙類星體。我們將此方法運用在Sloan Digital Sky Surveys所提供的類星體光譜資料庫,找出並匯集約500個新發現的候選雙類星體,並使用此數據進一步探索目前未被發現的雙類星體物理性質。

> 更多

科展作品檢索

彎月形冷卻增幅器

全球碳稅、碳權、碳交易即將推行勢必對國家及企業產品貿易額造成衝擊,台灣位於亞熱帶又因溫室效應增加全台用電量造成碳排放亦加劇。然而,台灣屬於貿易出口的國家若沒有做好減碳問題將對企業產品徵收稅。 因此,本研究利用石膏粉來製作冷卻管的主要材料,裡面還加了硅藻土來增加我們的吸水性及蒸發效率。將冷卻管設計成二種型式的冷卻增幅器,一個是嵌入 式、另一個是堆疊式。將這二種冷卻增幅器配置在小型空調系統的冷凝器進風口處進行降溫。結果發現,使用堆疊式冷卻増幅器效果較好,與未使用的系統耗電量差10瓦以上。

> 更多

科展作品檢索

AI人工智慧水上搜救裝置研究

AI智慧在新時代嶄露頭角,我們融合了紅外線熱感測儀、GPS座標定位系統和AI人臉識別技術,成功研發了一款創新的AI人工智能水上搜救裝置。我們的目標是透過這項技術,提高溺水者得到及時救援的機會,保障海上活動的安全。本研究將進行一系列測試,以驗證該裝置之性能。同時測試其防水性能,以確保其電子設備不會受損。接著,我們會進行座標回傳的測試,確保裝置能夠準確地定位需施救者的位置,將有助於救援隊伍快速響應。最後,我們將測試結合紅外線熱感測儀的人員識別系統,在海上環境中正常運作並準確識別需救援者的能力。本創新的技術將為海上救援帶來新血,使救援行動更加高效和可靠。我們期待這項裝置的成功應用,以保護更多海上活動者的安全。

> 更多

科展作品檢索

OMG!造霧者

我們研究「磁致伸縮」這有趣的題目!有趣在無法想像水一滴到棒子,馬上就氣化霧化,這怎麼可能?於是,我們透過科展研究,瞭解為什麼發生這現象! 研究結果發現:鐵氧芯的震動頻率非常關鍵,頻率對了!才會出現最佳氣化。鐵氧芯的頻率與長度相關,頻率讓鐵氧芯的NS極快速改變,使長度出現微小變化,巨觀的表現就是讓水氣化;鐵氧芯太長太短太粗或太細,都不能產生有效震動來出現氣化,只有棒徑1cm的鐵氧芯,才是最適合氣化的條件。鐵氧芯這種有點硬的材料,居然會在實驗時直接被震斷,我們發現震斷的地方,通常出現在共振最激烈的地方。 最終我們引進點滴設計,讓水滴自動滴下、持續氣化,提升研究的實用價值!

> 更多

科展作品檢索

風生水起-空氣產水IoT裝置

本研究探討如何利用空氣中的水分開發出創新型的空氣產水裝置。首先透過文獻探討,比較冷凝式和吸附式等不同空氣產水技術的優缺點。接著依據文獻分析,設計並製造結合冷凝式和吸附式的模組化空氣產水裝置,利用致冷晶片和矽膠做為冷凝和吸附的核心元件。實驗結果顯示,致冷晶片在工作電壓5V(功率9.2W)時,冷端溫度最低約9.4°C,對提高冷凝效率最有利。空氣產水裝置在此電壓下,產水速率可達5.41g/hr。但若考量能源效率,則在2V(功率3W)時每度電可產生550克水,產水能力最佳。而環境濕度是影響裝置效能的關鍵,當濕度低於40%時幾乎無法產水。溫度升高有助於提升產水效率,但太低時則會影響冷凝效果。基於上述實驗結果,我們結合Webduino成功開發出空氣取水IoT裝置。

> 更多

科展作品檢索

樂高EV3積木遠程遙控多功能陪伴寵物機

本研究主要是以樂高EV3為核心,設計「車炮合一」可遙控的移動載具發射器,並適合應用於寵物互動。我的設計最大特點是透過自製的發射機構,在零食發射系統中可發射10發以上的狗零食,玩具球發射系統最多可發射五球,這些發射的落點集中,力道不強,所以不會對寵物造成傷害,而彈跳的軌跡與次數,均能增加寵物狗的吸引力與趣味。另外機體功能的改良:履帶能適用於多種不同的室內鋪地,與寵物互動不受限制;AI功能中的超聲波智能避障距離20公分內不會碰觸到障礙物也不會對寵物有影響,範圍限制可保障機體,不會有損壞的危險。最後經過與寵物狗實測,發現小狗對本機器播出的語音會有反應,發射出的零食會啃咬,投擲出的小球也會追著玩耍。

> 更多

科展作品檢索

來吉,來「急」-居安思危話來吉

本研究發現:一、阿里山來吉附近溪流的野外地質調查發現,此地為沉積岩地層有很多順向坡容易造成滑落。坡面堆積和坡腳崖錐,到處可見。在調查中發現四個小斷層,證明此地變動劇烈地質條件不佳。二、所謂「來急」,是指本地在颱風或豪雨季節因坡陡、岩層破碎、崩塌等特性,加上河水湍急沖刷侵蝕劇烈氾濫潰堤,無數邊坡堆積的砂石碎屑被帶出來,土石流穿過村子,釀成災難。也就是風大「雨急」、土石「告急」、 岌岌可危令人「心急」的總稱 。三、為了「來吉」的安全,建議遷村,政府也於觸口建造「逐鹿社區」永久屋供村民居住。考量留在部落的村民,應該居安思危,平常要做好崩塌地的處理、砌駁崁擋土牆、建造防砂壩等水土保持的工作。

> 更多

科展作品檢索

從正方形內接四十五度的三角形談起

本研究源於一道常見的正方形內接三角形的動態幾何問題。我們考慮對角線,先刻劃出兩個動態的△𝐴𝐸𝐹與△𝐴𝑀𝑁之面積比值恆為定值,並且巧妙構造輔助線,利用純幾何方式證明共圓的動態四邊形 𝐸𝐹𝑀𝑁 的圓心軌跡為等軸雙曲線。為了一般化推廣,我們依序設定了等長、半角等條件去探討,實驗了長方形、菱形、直角箏形等,有趣的是,我們發現其兩個三角形面積比為定值的幾何結構是兩組四點共圓,並非等長或半角。值得一提的是,為了刻劃一般化的箏形中的圓心軌跡,我們先建立了菱形的模型,再給出箏形與菱形的對應模型,成功證明其圓心軌跡也是雙曲線。本研究將常見的幾何問題循序漸進地深化,刻劃出內在結構且給出獨特且有趣的成果。

> 更多

科展作品檢索

滑翔吧!旋轉中的飛行器

我們使用一般的紙杯,做出能在空中滑翔的紙杯飛行器,經過一系列的實驗設計,我們認為飛行器內外輪徑要有差異、外輪與內輪要有些重量差異,外輪杯口有重量且光滑平整,紙杯飛行器滑翔的距離會越遠,但飛行器的長度對紙杯飛行器滑翔的距離並不會有太大的影響。

> 更多

科展作品檢索

二岸塵情-濁水溪下游南北二岸西螺與溪州之落塵及PM2.5相關性研究分析

濁水溪南北二岸共14點測PM2.5、蒐集落塵以顯微鏡測粒徑、氣象署AQI,分析109.11至112.04 間PM2.5發現: 一、實測PM2.5與蒐集落塵及氣象署AQI,南岸高於北岸,戶外高於室外,冬季北風南岸揚塵與AQI同。 二、北岸戶外小顆粒低於南岸,戶外大顆粒大於室外,南岸戶外大顆粒高於北岸。冬季大顆粒高於夏季。 三、陰天PM2.5高,雨天PM2.5低。 四、冬季北風:戶外高於室外,南岸戶外、室外均高,環境影響。夏季南風:PM2.5低,北岸略高。 五、戶外落塵量:冬天南岸略高,夏天111年6~11月南岸也高。環境影響。相關係數低,落塵量二岸無相關。 六、風速高PM2.5增;溼度高PM2.5降。 七、PM2.5低夕陽清澈明亮;數值高夕陽渲染朦朧。雨後PM2.5二岸低。 八、濁水溪北風吹彿揚塵測試模型可模擬冬季北風情形。

> 更多