搜尋結果
查詢 ������共找到 14829筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

擋水神器-特斯拉閥的探討

特斯拉閥是一種神奇的發明,能利用管路的設計,達成流體在一個方向上流動時阻力最小,而在相反方向上流動時產生顯著的阻力的目的,我們想要運用在阻擋水流來降低災害上,我們的研究有以下的發現:(1)特斯拉閥的進水口角度為40度及出水口角度為30度時,減流的效果最佳;(2)特斯拉閥的支流愈寬,減流的效果愈佳;(3)交錯型主水道略優於對稱型主水道,但結構較複雜;(4)水流愈強,特斯拉閥減流的效果愈好;(5) 水的溫度與鹽度對於特斯拉閥減流效果沒有太大影響; (6)前後排列支流的特斯拉閥效果優於平行排列支流,且支流數量愈多,減流效果愈佳。

> 更多

科展作品檢索

風的整形大師~探討不同條件對微型風洞氣流穩定性的影響

風洞是重要的流體觀測設備,生活中許多物件都需要經過「風洞」研究空氣流經物體所產生的氣動效應;但風洞設備體積大又昂貴,小學生難以接觸到,因此,本研究針對微型風洞的製作條件進行探討。 本研究針對微型風洞的風速大小、整流段孔徑大小及長度、收縮段延長長度等變因,進行氣流穩定性觀測,運用水煙及紅色點狀雷射光點輔助氣流的呈現;結果顯示風速及整流段孔徑過大或過小都不利於層流的產生,整流段較長及收縮段適當長度有利於層流的穩定呈現。 研究發現使用孔徑9mm大小、長度20cm的整流段,組合收縮段延長長度10cm,搭配風速1m/s,是自製「微型風洞」較佳的組合條件,可以清楚觀測氣流在微型風洞中層流的產生,適用於中小學生對於流體的觀測應用。

> 更多

科展作品檢索

以「蹼」力進─探究蹼足結構對划水推進效能之影響

我們歷經觀察、設計、測試與改良,終於研發出能模擬鴨子雙腳蹼足交替划動、可穩定前行的「第三代機械鴨」。 我們還研發【推進力測量儀】,成功量測鴨蹼划水所產生的最大推進力,並運用 Tracker 軟體分析實驗影片,比對結果高度吻合,證明此測量儀為一個非常可信的實驗工具! 研究中發現蹼足的材質、面積、厚度、划水速度皆會顯著影響推進力表現! 而鴨脛長度與兩蹼夾角亦會影響機械鴨划行的穩定性與效率。在實驗中模擬小鴨列隊划行行為,驗證列隊划行有助於省力推進。 最後利用自行研發「波動感應儀」裝置讓我們以視覺化方式清楚理解鴨蹼划水在不同深度造成的水流動態特徵,是本研究的一大創意與突破。

> 更多

科展作品檢索

翻滾吧!花式彈跳板的跳躍軌跡探討

有趣彈跳板能像游泳選手在起跳台用力一蹬,產生不一樣彈飛運動。本研究發現:自製20度斜坡擺在高度10公分彈跳蹬台,彈跳板對折後把頭部放置與稜線距離3公分,起跳瞬間用高速攝影分析起跳角度接近45度,而且後側板對斜面及拉緊橡皮筋撞擊稜線都會產生下壓作用力,獲得斜向反作用合力,出現對稱彈跳軌跡,彈飛水平距離最遠203.2公分。當彈跳板鉛直向上,姿態如芭蕾舞者,呈現連續左右水平圓周方向快速旋轉,軌跡最直不傾斜!令人驚豔是彈跳板黏貼小小墊片竟能彈飛精采多樣的舞姿,當彈跳板斜向拋物,會逆時針連續後滾翻;當增加配重,翻轉變超快,落點更集中;當墊片黏腳部重心降低,有頭上腳下垂直圓周方向連續快速翻轉現象,非常有趣!

> 更多

科展作品檢索

笛管新聲-探討簧片對笛子聲音之影響

直笛是每位學生必學樂器,加上簧片巧思,創作出簧片直笛。實驗變因控制為形狀(三角形、梯形、長方形),厚度以及材質。運用問題解決,開發出雷射切割簧片及板擦機吹氣,將人為誤差去除。實驗發現,三角形簧片會將頻率往上移動,上升最大59.2%。梯形簧片,當簧片寬度越寬,振動頻率越低。長方形簧片,簧片長度越長,振動頻率越高。當厚度越厚,頻率會變低。不同材質簧片,發現投影片簧片頻率變化最佳。從共振分析得知,當簧片振動頻率接近笛子自然頻率,音量增加。當簧片振動頻率沒有接近笛子自然頻率時,無法發出聲音。原本學生常用的高音笛,配合簧片替換創新,可吹出超高音笛的聲音。「笛管新聲可創造出不同音域的巧妙變化」。

> 更多

科展作品檢索

微觀漩渦之力—截油槽中油滴運動軌跡分析

本研究探討油滴在截油槽中之微觀運動行為與流場結構之關聯性。透過模擬截油槽模型,設計不同槽數與隔板長度變化條件,並以油溶性染劑染色油滴,結合 Tracker軟體進行追蹤分析,觀察油滴運動軌跡與滯留時間。研究同時比較不同進水速度對油滴行為的影響,並進行皂化反應秤重分析,以量化截油效果。實驗結果: 一、多槽設計可提供更多擾動與攔截區域,有助提升截油效率; 二、快速進水容易產生漩渦,延長油滴滯留; 三、Tracker能有效捕捉油滴微觀運動,佐證槽體設計與流速改變對油滴分布之影響; 四、皂化產物重量亦能與流場結構形成對應關聯。 綜合而言,隔板設計與進水條件明顯影響截油效率,本成果可作為截油槽優化設計,並呼應SDGs永續水資源目標。

> 更多

科展作品檢索

磁來運轉~磁性齒輪轉動圈數比因素探討

本研究主要是以磁力特性與齒輪傳動原理為基礎,再透過資料蒐集、影片觀察與3D建模分析,並設計及製作零件可拆式之 磁性齒輪,可隨著各種圓心角的變化放置磁鐵和鐵質層進行實驗,依照各種放置物的分布不同,而呈現特定的旋轉比例關係。研究包括同軸性磁性齒輪、徑向式磁性齒輪,又可分為平面式與立體式,同時也研究磁性齒輪應用於生活中的可行性,例如:利薩如曲線等。 設計分析上我們採用3D建模分析法,以及實際測量磁場來修正建模理論,加上實作上的考慮,而設計出轉動圈數比較穩定的磁性齒輪。 在實驗上,我們利用強力磁鐵,配合適當的鐵質層,以及找出磁性齒輪的對稱性組合,設計出穩定圈數比的磁性齒輪對於產品的性質及應用表現非常滿意。

> 更多

科展作品檢索

植物聊天室~聲音頻率之探究

聲音是振動產生的聲波,當流體中形成氣泡或空隙時,壓力會迅速下降到蒸氣壓以下,於是就會發生空蝕現象,產生震動而有聲音。我們利用PlantWave感測器,夾住植物的葉子,植物因空蝕現象產生震動,感測器測到震動電波,透過演算法轉換成聲音,再將聲音經由phyphox app測得其頻率。我們進一步以植物的種類、不同器官、不同環境、不同對待方式、不同的澆水量等作為實驗的變因進行,再透過手持顯微鏡的鏡頭觀察水分在維管束中流動情形,結果發現實驗葉片面積較大者、同株植物較成熟的莖、環境的溫度較高濕度較低、在受觸摸對待、水量較多、缺少空氣及陽光的狀態下,水分傳輸變化較快,推測在植物內部氣泡及壓力產生變化,形成空蝕現象,因而所測得的聲音頻率較高。

> 更多

科展作品檢索

奔跑吧!火焰!——單向繞圈移動火焰之探究

有一天,我和家人在網路上看到了一段非常有趣的影片。影片中,作者用花盆底座的外圈凹槽當作軌道,倒上燃料後點火,結果出現了一個像賽跑選手一樣在軌道上跑來跑去的火焰,而且一直繞圈轉不停。圖1是影片的截圖。這個現象讓我們看得目不轉睛,但也讓我們忍不住懷疑:這影片是真的嗎?火焰真的可以這樣移動嗎?這種現象會不會需要什麼特別的條件?因為對這個現象非常好奇,我找了幾個和我一樣有興趣的朋友,還請教了老師,希望一起來做研究。我們想通過實驗來找出火焰為什麼會這樣移動,還有哪些條件能夠讓它發生,也想知道會影響火焰移動速度的原因。我們希望能透過這些實驗了解背後的科學原理,並為火焰的動態行為研究提供一個有趣又不一樣的觀點。

> 更多