搜尋結果
查詢 電腦共找到 902筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

Project M.I.R.A.S

1.1 Short project summary My project involves the conceptualization and development of an innovative approach to modular self-assembling robotic systems. Through its ability to form any complex configuration, the system is highly adaptable to various scenarios and environments. Before delving deeper into the details of my project, I will provide an overview of my background and motivations. 1.2 Background Ever since I first watched the movie "Big Hero 6", I felt amazed by the applications of the so called “microbots”. From that point on, it made me always wonder what would be possible in the real world. When I did the research, I stumbled upon this field of modular robotics. Initially, I was unsure whether to embark on a project focused on electronics and robotics due to my background in programming. On the other side, this year gave me a chance to see the incredible performances of various projects at different science expos. Besides, I took part in the program of CANSAT LU and learned a lot during it, such as microchips, the control of miniature robotics, and the sensors of it. Finally, at school, I took the option Electronics where we dig into similar topics. With this accumulated knowledge and experience I felt confident enough to start this project.

> 更多

科展作品檢索

領域展開-Dual graph 解 Hamilton cycle在平面圖上的存在性問題

本研究以對偶圖的性質,取代以往著重點或邊數量的方法,探討平面圖中漢米爾頓迴圈的存在性。我們設計一套定理,判斷對偶圖對應之原圖是否存在漢米爾頓迴圈,並提出「T 搜索」,有效降低電腦計算的時間複雜度。此外,我們建立多項化簡定理,能在不影響迴圈存在與否的前提下,透過邊、點的替換與收縮,或圖的結構分解來簡化圖形。研究中也討論 Herschel Graph 與 Tutte’s Graph,並提出當圖中出現特定結構時,原圖不具漢米爾頓迴圈的判別條件。最後,成果可用於構造具漢米爾頓迴圈平面圖之對偶圖,並期望數學方法推導出無漢米爾頓迴圈的平面圖,或用電腦窮舉所有無漢米爾頓迴圈平面圖之對偶圖,以便延伸討論。

> 更多

科展作品檢索

自監督學習在臺灣手語辨識上之應用研究

在臺灣手語辨識,先前研究所使用的監督式學習需要大量標記樣本而限制可辨識詞彙量。為此,本研究借鑒自然語言處理領域中BERT 的遮罩想法,將未標記手語影片隨機遮蓋部分幀數,並讓模型學習預測被遮蓋的幀數以學習臺灣手語的特徵,並透過遷移學習來訓練辨識模型,此作法可克服現有臺灣手語資料缺少的問題。經過實驗,本研究訓練之詞彙辨識模型達成了242 個詞彙量,94.8%的準確率。 此外,先前研究皆未在手語句子翻譯上有成果。因此本研究基於預訓練模型,整合設計手語翻譯的系統,實驗中,系統在100 個句子的翻譯表現達到88%的準,且BLEU-4 分數取得20.98,證明自監督學習的方式在手語辨識、翻譯上是有效的。並展現出樣本需求少與辨識詞彙量可輕易擴大的潛力。

> 更多

科展作品檢索

基於特徵解耦的視覺轉換器之指靜脈辨識模型

發展安全且可靠的身份辨識技術是當今的重要議題,而指靜脈因其高安全性及難以偽造特性成為我們的主題。本研究提出一種基於Transformer模型架構的指靜脈辨識模型稱為GLA-FD,旨在解決現有技術對指靜脈影像特徵表示與提取的局限性。透過開發特徵解耦與重建模組(FDRM),模型能夠有效區分指靜脈的背景資訊與紋理特徵,並將其重新組合以提升辨識準確度。此外,本研究開發的全域-局部注意力模組(GLAM)能同時捕捉影像的全域與局部特徵,進一步強化模型對指靜脈特徵的理解。GLA-FD在FV-USM、PLUSVein-FV3、MMCBNU-6000、UTFVP、NUPT-FPV 資料集中的正確辨識率(CIR)達到100%、98.47%、99.75%、96.11%、99.82%,展現卓越的穩定性與泛化能力。此外,本模型在處理不同年齡層、國籍與影像模糊度的資料下,仍能保持高辨識準確度,顯示其在需要高安全性辨識的應用場景中具備廣泛的實用性。

> 更多

科展作品檢索

矩形密鋪及其應用

「在格狀平面中用矩形以互不重疊的方式鋪滿(2D rectangle tiling problem)」為一NP-complete問題(Dani`ele Beauquier et al ,1995),目前多項式時間只能求出盡可能覆蓋最大面積的近似解。本研究所創的階梯演算法 stair algorithm 透過改變動態規劃紀錄狀態的方式,使狀態數大幅減少,進而改善求準確解的時間複雜度,也成功證明此演算法的正確性。本研究的演算法可被應用於平行計算中的負載平衡、積體電路設計等方面。隨後,本研究寫了一個互動展示品清楚呈現此演算法的功能。且以階梯演算法成功檢驗並比較 RTILE PROBLEM 的 7/3-approximation algorithm (Krzysztof Lorys and Katarzyna E. Paluch,2000 [4]) 與 11/5-approximation algorithm (Piotr Berman et al,2001[7])進行比較與分析。

> 更多

科展作品檢索

基於心電圖的智慧睡眠分析

睡眠相關問題常見於現代緊張的社會,傳統睡眠分析方法需要腦電圖(EEG)、肌電圖(EMG)、眼電圖(EOG)等信號,量測複雜度高。本研究透過 Python 程式語言以深度學習和階層式投票機器學習方法,開發一套自動分析程式,僅透過心電圖(ECG)信號分析睡眠階段。並結合睡眠評估標準,製訂一可量化的睡眠品質評估表,提供臨床醫師判讀睡眠品質的指標。本研究的優點是僅透過一種信號便能準確、客觀、快速分析,且操作介面簡易。研究結果顯示,本研究清醒和睡眠狀態之辨識準確率高達約90%,與其他類似睡眠品質評估研究的論文比較,準確率高出10~17%,整體睡眠階段分析準確度高達87%。本研究方法未來可應用於臨床醫療,協助醫師做精準的患者睡眠品質診斷。

> 更多

科展作品檢索

建構標準舞蹈姿勢評分系統

在現今社會,個人越來越依賴自主學習以提升技能和知識,而舞蹈學習尤其受到關注。然而,在沒有專業指導的情況下,學員往往難以掌握舞蹈動作的細節,也難以清楚地評估自己的表現與標準示範之間的差距。 為了應對這一挑戰,本研究利用人體姿態識別演算法OpenPose,捕捉舞蹈者的關節點。通過這項技術,針對舞蹈的標準動作、力度、流暢度等方面,成功地開發出一款自動評分系統。 通過人體姿態識別技術,我們能夠深入分析舞蹈動作的細節,讓學員與標準舞蹈動作進行比較,以確認學習上的差異。我們希望通過這項研究,學員能在沒有專業指導的情況下,利用網路平台創建更有效且有趣的自主學習環境。

> 更多

科展作品檢索

運用深度學習色彩校正模型之黃疸偵測 Jaundice Detection Using Deep Learning-Based Color Correction Models

現今醫療中,黃疸的早期偵測對肝臟疾病的預防與治療至關重要,但多數人難以在症狀輕微時察覺。我們希望藉由智慧手機影像結合機器學習進行黃疸檢測,提升民眾自我監測的能力。Su 等人(2021)曾使用深度學習和機器學習進行黃疸預測,但其方法依賴專業色卡進行色彩校正,成本高且限制應用範圍。本研究提出以白平衡演算法中的白色補丁法與灰界演算法,搭配深度學習模型 DCCNM1和2 取代色卡,提升黃疸檢測的普及性與便利性。經黃疸偵測效果評估顯示,DCCNM2 在無色卡模型中表現最佳,雖然各指標略低於色卡校正,但其展現出優異的穩定性和準確性,證明其作為無色卡黃疸篩檢方案的可行性。本方法將能提供便捷的居家黃疸檢測途徑,尤其對偏鄉地區居民而言,不僅提升早期發現的機會,還能有效減輕醫護人員的負擔,推動大眾健康管理。

> 更多

科展作品檢索

自監督學習在臺灣手語辨識上之應用研究

在臺灣手語辨識,先前研究所使用的監督式學習需要大量標記樣本而限制可辨識詞彙量。為此,本研究借鑒自然語言處理領域中BERT 的遮罩想法,將未標記手語影片隨機遮蓋部分幀數,並讓模型學習預測被遮蓋的幀數以學習臺灣手語的特徵,並透過遷移學習來訓練辨識模型,此作法可克服現有臺灣手語資料缺少的問題。經過實驗,本研究訓練之詞彙辨識模型達成了242 個詞彙量,94.8%的準確率。 此外,先前研究皆未在手語句子翻譯上有成果。因此本研究基於預訓練模型,整合設計手語翻譯的系統,實驗中,系統在100 個句子的翻譯表現達到88%的準,且BLEU-4 分數取得20.98,證明自監督學習的方式在手語辨識、翻譯上是有效的。並展現出樣本需求少與辨識詞彙量可輕易擴大的潛力。

> 更多

科展作品檢索

黑白猜一猜,AI來分開─圍棋AI自動分類機

本作品結合積木、馬達機械結構與AI技術自製「圍棋AI自動分類機」,將黑白子分類收納解決下完棋後沒人收拾的問題,我們以自動麻將桌概念為發想,設計9項不同實驗,首先以不同裝置測試棋子掉落方式,發現賓果滾筒能有效控制棋子一個一個掉落,其次大量拍攝不同燈光環境下黑白子照片,以Label-Studio進行影像標註,撰寫Python程式訓練AI影像辨識模式並控制伺服馬達轉向,使黑白子依辨識結果正確分類至棋盒。結果顯示「圍棋AI自動分類機」分類正確率高達99%,此外我們也應用於盲用圍棋,協助視障學生收棋,提升下棋便利性與學習意願。本作品不僅展現AI應用於日常生活創意實踐,也呼應SDGs中促進優質教育目標。

> 更多

科展作品檢索

語音模型逆向攻擊架構分析與防禦策略探討

本研究中,我們對模型逆向攻擊在語音辨識系統中的影響及風險進行深入分析。隨著Siri、Google Home等智能助理設備在日常生活中的廣泛使用,其語者辨識系統的安全隱患引起了我們的注意。本研究目的在於深入理解模型逆向攻擊的運作機制,並探討其對語音辨識系統的攻擊效果。我們透過實施多樣化的攻擊策略,對不同的模型架構和數據處理方法進行了評估,並對人聲與非人聲的數據集進行了攻擊效果的比較。此外,我們亦實現了基於差分隱私的防禦算法,在多數模型架構下達到接近50%的防禦效果,顯著提高攻擊代價。研究整體揭示了語音辨識系統在面對模型逆向攻擊時的脆弱性,並藉由實驗分析推論出可能的防禦策略,期待能通過策略來增強模型的安全性。

> 更多

科展作品檢索

情感分析生成器—自動生成文字感染情緒

隨著網路技術不斷的進步,意見和情感分析逐漸成為人們日常生活中的一部分。儘管如此,目前人們缺乏一個方便且快速的情緒分析模型,供廣大大眾使用。 本研究旨在提供人們一個緩解憂鬱情緒的管道——當人們輸入一個需要被安慰的情境時,我們的系統將輸出安慰語句,以緩解該使用者之憂鬱情緒,達到安慰效果。為此,本研究訓練了BERT model以及 LLaMA model。BERT model能判斷使用者輸入的語句是否為需安慰語句。而LLaMA model則作為安慰語句之生成模型,以達到安慰之效果。

> 更多