搜尋結果
查詢 電腦共找到 881筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

IoT智慧取貨機

現在的超商取貨機制存在著很大的時間成本,一次取貨要是花費數分鐘在找貨,那長久下來會造成大量時間的消耗,因此為了提高領或效率,我們設計了一台裝置來減少取貨的過程之中,因人為造成的時間耗損,並降低領錯貨物的可能性。 而我們也可以依據存放貨物種類及應用方式而改造,製作出適合不同物品的存取裝置,像是用於書籍的存放,讓使用者可以自行借閱或歸還,藉由改造裝置,普及於各種類型貨物的存放,為我們的生活增加便利性。 除了擴大使用方式,增添提領貨物的提示,為貨物增設設定,關於提升整體實用性的部分也有待我們進行更進一步的探討。

> 更多

科展作品檢索

程式語言學習系統

『程式解題系統』是提供不同難易的題目給學習程式設計者使用的系統,主要透過測試資料來驗證程式碼的正確性和效能姓。然而,這類系統大多為私人用。台灣著名的程式解題系統有台中女中程式解題系統及高中生解題系統(Zero Judge)等,題目雖然繁多卻分類雜亂,不能讓教師客製化題目給學生,只能從眾多題目中,零散的挑出適合學生的題目,給學生練習。基於以上理由,此研究目的是做出不同於一般程式解題系統的功能,希望能讓教師彈性增刪題目。使用Python為基礎語言,後端採用Django框架,已經架構出系統的原型,並上架至Heroku(zeaf.herokuapp.com)。希望循序漸進地讓學習者有成就感,也讓教師能監督每一個學生學習狀況。

> 更多

科展作品檢索

Adversarial Attacks Against Detecting Bot Generated Text

With the introduction of the transformer architecture by Vaswani et al. (2017), contemporary Text Generation Models (TGMs) have shown incredible capabilities in generating neural text that, for humans, is nearly indistinguishable from human text (Radford et al., 2019; Zellers et al., 2019; Keskar et al., 2019). Although TGMs have many potential positive uses in writing, entertainment and software development (Solaiman et al., 2019), there is also a significant threat of these models being misused by malicious actors to generate fake news (Uchendu et al., 2020; Zellers et al., 2019), fake product reviews (Adelani et al., 2020), or extremist content (McGuffie & Newhouse, 2020). TGMs like GPT-2 generate text based on a given prompt, which limits the degree of control over the topic and sentiment of the neural text (Radford et al., 2019). However, other TGMs like GROVER and CTRL allow for greater control of the content and style of generated text, which increases its potential for misuse by malicious actors (Zellers et al., 2019; Keskar et al., 2019). Additionally, many state-of-the-art pre-trained TGMs are available freely online and can be deployed by low-skilled individuals with minimal resources (Solaiman et al., 2019). There is therefore an immediate and substantial need to develop methods that can detect misuse of TGMs on vulnerable platforms like social media or e-commerce websites. Several methods have been explored in detecting neural text. Gehrmann et al. (2019) developed the GLTR tool which highlights distributional differences in GPT-2 generated text and human text, and assists humans in identifying a piece of neural text. The other approach is to formulate the problem as a classification task to distinguish between neural text and human text and train a classifier model (henceforth a ‘detector’). Simple linear classifiers on TF-IDF vectors or topology of attention maps have also achieved moderate performance (Solaiman et al., 2019; Kushnareva et al., 2021). Zellers et al. (2019) propose a detector of GROVER generated text based on a linear classifier on top of the GROVER model and argue that the best TGMs are also the best detectors. However, later results by Uchendu et al. (2020) and Solaiman et al. (2019) show that this claim does not hold true for all TGMs. Consistent through most research thus far is that fine-tuning the BERT or RoBERTa language model for the detection task achieves state-of-the-art performance (Radford et al., 2019; Uchendu et al., 2020; Adelani et al., 2020; Fagni et al., 2021). I will therefore be focussing on attacks against a fine-tuned RoBERTa model. Although extensive research has been conducted on detecting generated text, there is a significant lack of research in adversarial attacks against such detectors (Jawahar et al., 2020). However, the present research that does exist preliminarily suggests that neural text detectors are not robust, meaning that the output can change drastically even for small changes in the text input and thus that these detectors are vulnerable to adversarial attacks (Wolff, 2020). In this paper, I extend on Wolff’s (2020) work on adversarial attacks on neural text detectors by proposing a series of attacks designed to counter detectors as well as an algorithm to optimally select for these attacks without compromising on the fluency of generated text. I do this with reference to a fine-tuned RoBERTa detector and on two datasets: (1) the GPT-2 WebText dataset (Radford et al., 2019) and (2) the Tweepfake dataset (Fagni et al., 2021). Additionally, I experiment with possible defences against these attacks, including (1) using count-based features, (2) stylometric features and (3) adversarial training.

> 更多

科展作品檢索

基於影像辨識之智慧冰箱學習系統

民眾在生活採買與準備食材中,經常面臨一些問題,例如:忘記冰箱食品而導致重複購買與浪費、食品放置過期…等。因此我們提出一個可以解決上述問題的系統,藉由影像辨識來判斷食品品項與移動軌跡,藉此建立冰箱內部的食品清單,並且可透過冰箱觸控螢幕與手機APP,查看與設定清單內容。針對無法辨識的食品,系統可以學習訓練建立影像辨識模型,並針對現有的食品類別進行增量訓練,提高辨識食品的準確率。藉由本研究所提出的系統,可以學習與辨識各項冰箱食品、設定過期提醒通知,與冰箱異常偵測,協助使用者有效且便利地管理冰箱雜物、掌握冰箱的狀態。

> 更多

科展作品檢索

深度學習掌紋疾病分析系統

遠距醫療及自我健康檢測在最近幾年逐漸崛起,其講求利用大眾化的工具即可掌握醫療知識與自我健康監測,並透過大數據分析及人工智慧技術,協助醫師與病患進行更有效的治療,但目前中醫在這方面的研究不多,與影像辨識相關的也只有舌診。目前對於手掌的研究多半止步於身分辨識,因此手診還需中醫師切脈或檢查。 本研究作品旨在發展自動手診方法,提供民眾自我健康監測。利用兩種方式1.整張手的CNN圖像分類 2.用YOLO物件偵測進行掌中的特徵點抓取,使其能分辨肝掌、富貴手、蜘蛛痣、汗皰疹、無症狀,最後,並將模型與手機APP結合。

> 更多

科展作品檢索

The GoClub-梅花棋演算法效率及適用性分析

本研究旨在研究一款自創棋類遊戲「梅花棋」,找出效率最佳的演算法及分析AI的適用性。遊戲規則如下:雙方玩家輪流在19階的棋盤上下棋,先手執黑子,後手執白子,任一方形成梅花即獲勝。隨著棋子的增加,肉眼判斷勝負愈發困難,因此希望借助電腦的力量完成它。我們透過C++編寫程式,持續改良優化演算法,提升電腦的精確度與流暢度。過程中依序提出了平均演算法、畢氏定理演算法、向量演算法、以及網狀編碼演算法。目前最新版本中,我們使用含有螺旋編碼表的網狀編碼演算法,這可使電腦快速正確地判斷勝負。得到最佳的演算法後,我們嘗試運用撰寫Minimax演算法編寫AI,並且不斷增加演算法的深度,從而提升電腦的實力。透過Victory notion的概念分析兩者間的相似度,判斷其對於梅花棋的適用性。透過不斷與Minimax演算法測試遊戲,將梅花棋規則中,先後手的優勢差距逐漸縮小。目前本研究已可順利進行單純的雙人對戰與複雜的人機對戰模式。

> 更多

科展作品檢索

影片情境化字幕實現探討

本研究旨在改善聽障人士無法完整接收影音類型資訊的狀況,探討各種影片處理技術,尋找、嘗試並比較各種方法,整合出最適合的系統自動替影片嵌入情境化字幕——用視覺的方式呈現影片聽覺訊息,讓聽障人士便於理解各種類型的影片內容與資訊。 為此,我們呈現的情境化字幕有主要幾個特點: 1、將聲音對話轉為字幕標記在說話者旁,透過畫面中語句位置就可以了解跟語者的對應關係。 2、畫面中字幕會以漸漸上飄消失的泡泡字幕來呈現,使觀影者有充足時間閱讀字幕理解內容。 3、將環境音效如電話聲、雷聲與貓叫聲等各種能傳達資訊的聽覺訊息標示在畫面中。 藉由這些處理使畫面呈現更豐富的影片資訊,最終達到改善聽障人士資訊接收權益不平等的目標。

> 更多

科展作品檢索

股票年週期循環技術分析應用程式

本研究係運用多項式擬合技術,表示出股價的年週期循環特性及趨勢,製作出可顯示個股股價年週期循環趨勢的應用程式。 先觀察市面上常見的股票技術分析,接著用Octave進行研究,最後運用Python製作出包含使用者介面的應用程式,並將分析結果量化及輸出,本研究將此應用程式稱為「股價年週期循環技術分析應用程式」。

> 更多

科展作品檢索

A.N.T.s: Algorithm for Navigating Traffic System in Automated Warehouses

According to CNN Indonesia 2020, the demand for e-Commerce in Indonesia has nearly doubled during this pandemic. This surge in demand calls for a time-efficient method for warehouse order-picking. One approach to achieve that goal is by incorporating automation in their warehouse systems. Globally, the market of warehouse robotics is expected to reach 12.6 billion USD by 2027 (Data Bridge Market Research, 2020). In this research, the warehouse system studied would utilize AMR (Autonomous Mobile Robots) to lift and deliver movable shelf units to the packing station where workers are at. This research designed a heuristic algorithm called A.N.T.s (Algorithm for Navigating Traffic System) to conduct task assigning and pathfinding for AMR in the automated warehouse. The warehouse layout was drawn as a two-dimensional map in grids. When an order is placed, A.N.T.s would assign the task to a robot that would require the least amount of time to reach the target shelf. A.N.T.s then conducted pathfinding heuristically using Manhattan Distance. A.N.T.s would help the robot to navigate its way to the target shelf unit, lift the shelf and bring it to the designated packing station. A.N.T.s algorithm was tested in various warehouse layouts and with a varying number of AMRs. Comparison against the commonly used Djikstra’s algorithm was also conducted (Shaikh and Dhale, 2013). Results show that the proposed A.N.T.s algorithm could execute 100 orders in a 27x23 layout with five robots 9.96 times faster than Dijkstra with no collisions. The algorithm is also shown to be able to help assign tasks to robots and help them find short paths to navigate their ways to the shelf units and packing stations. A.N.T.s could navigate traffic to avoid deadlocks and collisions in the warehouse with the aid of lanes and directions.

> 更多

科展作品檢索

騎士變奏曲

騎士過城堡是一款棋盤模式的電腦遊戲,棋盤是由14格棋盤格組成之圖形,以騎士棋的斜日式走法,選擇棋盤格上的任意棋盤格作起點,跳完棋盤格上的14格棋盤格,每個棋盤格子僅能跳一次,跳完全部棋盤格回到起點即過過關。研究動機是希望能找出符合過關條件的其他棋盤格圖形以增加遊戲樂趣。研究目的在5X5與6X6的棋盤格範圍內,探討以「基礎圖形擴張法」找出其延伸的棋盤格圖形,與圖形中具多條可解路徑之規律性。研究過程中下指令Chatgpt生成Python程式碼,跑出基礎圖形延伸之棋盤格路徑。研究結果在5X5以8格基礎圖形其延伸圖形有14個、5X5與6X6以6格基礎圖形其延伸圖形分別有306與14535個,而圖形的中多條可解路徑由1-多條主迴圈與1-2條次迴圈所構成之規律性。

> 更多

科展作品檢索

利用虛擬篩選LpxC抑制劑的方式找出對抗多重抗藥性綠膿桿菌的新療法

多重抗藥性(MDR)細菌已經在全世界的範圍內成為了一個重大威脅,而像是多重抗藥性的綠膿桿菌就是其中一種對大多數療法有抵抗力的病原體。在目前的治療方案無效之前,有必要開發出一種新型機制的抗生素能夠作為對抗的手段。我們通過電腦虛擬篩選的方式,並用一個脂多糖脂質A (LipidA)生合成路徑的關鍵蛋白,LpxC,作為篩選的對象。在我們的第一次預測中,ZINC000001587011 (brequinar) 具有較低的結合能和較高的生物利用度。但由於其較高的cLogP值,使我們對其進行了官能團修飾,以期能有所改善。最後,我們在所有衍生物中找到了N11,有最大的潛力能做為抗綠膿桿菌的藥物前驅物。

> 更多

科展作品檢索

利用深度學習將黑白影片色彩化

1920年代和1930年代,攝影設備剛剛起步,攝影設備只能拍攝黑白圖像的照片或影片,但仍有許多經典電影被記錄下來。如今,隨著科技的進步,攝影設備也在不斷迭代,彩色成像技術和高品質成像技術不斷被更好的技術所取代。因此,如何將黑白圖像轉換為彩色圖像成為一個重要的研究課題。本研究的目的是將黑白影片轉換成彩色影片。我們的方法可以分為兩部分:彩色化模型設計和影片連續性優化。在顏色轉換模型設計部分,我們使用了生成對抗網絡(GANs)技術,基於U-Net設計了5個模型,並使用COCO數據集訓練顏色生成模型。在電影連續性優化部分,我們首先使用景觀數據集中微調的前五個模型中最好的模型。在這個過程中,我們發現模型生成的影片存在顏色不連續的問題。因此,我們設計了三套方案來解決,比如使用H.264重新編碼生成電影,使用平均像素的色調值提高電影的色調穩定性,使用ORB預測個別幀。結果表明,影片的色彩轉換效果表現優異。

> 更多