搜尋結果
查詢
電腦共找到
779筆。
如查無相關資訊,可至
進階搜尋
進行查詢
新冠肺炎疫情期間,拍攝不少戴口罩的照片,但人們希望能保留未戴口罩照片,為了解決這個問題,本研究建構人臉口罩去除系統,給予無口罩覆蓋的來源圖片作為參考,透過擷取人臉和口罩輪廓的特徵點,進行人臉置換、圖像填補與色彩優化等步驟,對於戴口罩圖片的口罩區域進行人臉復原。 本研究透過校正戴口罩人臉特徵點的誤差,設計改良演算法精準地偵測口罩區域,利用輪廓偵測演算法擷取口罩輪廓特徵點框出區域,將來源圖片的對應區域置換到戴口罩圖片上,並使用圖像填補技術修復填補口罩置換後的殘影,再對圖片置換的拼接處進行色彩優化,讓整體臉部膚色具一致性,經成效評估驗證,成功自然地將戴口罩圖片復原為未戴口罩的真實樣貌。
> 更多
科展作品檢索
AI時光機-利用照片轉換技術重溫在地歷史
目前網路上流傳許多使用人工智慧修復照片的網站或應用軟體。然而,由於這些訓練資料多數來自國外,導致修復台灣「本地」照片的效果欠佳。此外,許多老舊照片因氧化、潮濕而泛黃,使得修復程序比起修復純黑白相片更加困難。因此,本研究旨在建立一個專門修復本地照片的機器學習模型,主要分為以下三個部分:首先,使用機器學習模型對老舊照片進行修復,包括著色、去模糊化和降噪;其次,分析使用不同比例之有色調照片(模擬泛黃照片)訓練模型的效果;最後,研究不同的修復順序(著色、去模糊化、降噪)和模型執行次數對照片修復效果的影響,發現「著色、去噪、去模糊化」的順序修復效果最佳。
> 更多
科展作品檢索
Method of prosthetic vision
This work is devoted to solving the problem of orientation in the space of visually impaired people. Working on the project, a new way of transmitting visual information through an acoustic channel was invented. In addition, was developed the device, which uses distance sensors to analyze the situation around a user. Thanks to the invented algorithm of transformation of the information about the position of the obstacle into the sound of a certain tone and intensity, this device allows the user to transmit subject-spatial information in real time. Currently, the device should use a facette locator made of 36 ultrasonic locators grouped in 12 sectors by the azimuth and 3 spatial cones by the angle. Data obtained in such a way is converted into its own note according to the following pattern : the angle of the place corresponds to octave, the azimuth corresponds to the note and the distance corresponds to the volume. The choice of the notes is not unambiguous. However, we used them for the reason that over the centuries, notes have had a felicitous way of layout on the frequency range and on the logarithmic scale. Therefore, the appearance of a new note in the total signal will not be muffled by a combination of other notes. Consequently, a blind person, moving around the room with the help of the tone and volume of the sound signals, will be able to assess the presence and location of all dangerous obstacles. After theoretical substantiation of the hypothesis and analysis of the available information, we started the production of prototypes of the devices that would implement the idea of transmitting information via the acoustic channel.
> 更多
科展作品檢索
Cross-lingual Information Retrieval
In this project, we evaluate the effectiveness of Random Shuffling in the Cross Lingual Information Retrieval (CLIR) process. We extended the monolingual Word2Vec model to a multilingual one via the random shuffling process. We then evaluate the cross-lingual word embeddings (CLE) in terms of retrieving parallel sentences, whereby the query sentence is in a source language and the parallel sentence is in some targeted language. Our experiments on three language pairs showed that models trained on a randomly shuffled dataset outperforms randomly initialized word embeddings substantially despite its simplicity. We also explored Smart Shuffling, a more sophisticated CLIR technique which makes use of word alignment and bilingual dictionaries to guide the shuffling process, making preliminary comparisons between the two. Due to the complexity of the implementation and unavailability of open source codes, we defer experimental comparisons to future work.
> 更多
本研究主要為進行安全帽改造,昔日我們常見關於汽車的盲區偵測、內輪差等先進技術皆建置於汽車上面,但實際在行車上造成災害發生的主角大部分為機車,我們閱讀相關文獻發現目前並無機車有相關技術,再者我們希望此技術可以讓騎乘機車、電動機車、電動腳踏車、腳踏車等對象皆可使用,因此我們於安全帽上裝設鏡頭及雷達感測器,透過鏡頭進行車輛物件識別,以識別車輛類型及輪距,進而以公式繪製內輪差曲線與進行盲區車輛偵測;透過雷達計算車側距離以判斷車輛是否會太靠近汽車或是落入汽車之內輪差範圍內,將以上偵測結果透過抬頭顯示方式直接投影在安全帽的面罩上,如此一來將可讓機車及腳踏車族在行車上更具安全性。
> 更多
「使用給定的多個矩形密鋪一個格狀平面(2D rectangle tiling problem)」為一NP-complete問題,目前多項式時間只能求出盡可能覆蓋最大面積的近似解。本研究所創的階梯演算法透過改變動態規劃所紀錄的狀態,使狀態數大幅減少,進而改善求準確解的時間複雜度,當然也成功證明此演算法的正確性,並且此演算法也能處理環狀及有權重的類似問題,如RTILE PROBLEM、DRTILE PROBLEM。隨後,寫了一個互動展示品直覺地呈現此演算法的意義。並以階梯演算法成功將7/3-approximation algorithm (Krzysztof Lorys and Katarzyna E. Paluch,2000 [4]) 與11/5-approximation algorithm (Piotr Berman et al,2001[7])進行比較與分析。
> 更多
科展作品檢索
「薈」萃一「碳」~以自組測試工具探討自製綠色蘆薈碳焦拉膜的功能
本研究利用蠟燭燃燒產生的碳焦,混加蘆薈及自製史萊姆開發為綠色產品~薈碳拉膜。研究中為取得碳焦,探討不同火源、吸附材質及離火焰高度對碳焦產生的影響,發現距離蠟燭火焰高度1公分處,以不鏽鋼杯底收集,可取得最多碳焦量。並以自組各種工具測試薈碳拉膜的延展性、隔熱及耐酸雨濕沉降等功能及運用電腦課所學編寫程式-程小奔進行RGB透光測試遮光效能。研究試驗出蘆薈碳焦拉膜的最佳組成比例為蘆薈:碳焦:自製史萊姆(20:0.6:10)。經與市面隔熱紙比較,蘆薈碳焦拉膜具有較佳展延性,防護酸雨濕沉降功能、遮光及隔熱能力佳,有取代化學隔熱紙的可能性,符合綠色化學節能、低毒、簡潔、可解原則,是值得推廣的綠色優質產品。
> 更多
科展作品檢索
Cross-lingual Information Retrieval
In this project, we evaluate the effectiveness of Random Shuffling in the Cross Lingual Information Retrieval (CLIR) process. We extended the monolingual Word2Vec model to a multilingual one via the random shuffling process. We then evaluate the cross-lingual word embeddings (CLE) in terms of retrieving parallel sentences, whereby the query sentence is in a source language and the parallel sentence is in some targeted language. Our experiments on three language pairs showed that models trained on a randomly shuffled dataset outperforms randomly initialized word embeddings substantially despite its simplicity. We also explored Smart Shuffling, a more sophisticated CLIR technique which makes use of word alignment and bilingual dictionaries to guide the shuffling process, making preliminary comparisons between the two. Due to the complexity of the implementation and unavailability of open source codes, we defer experimental comparisons to future work.
> 更多
科展作品檢索
箇中「橋」楚—研究不同演算法對數橋遊戲的差異性
本研究提出有關數橋謎題遊戲的程式實作辦法,我們已知數橋被證明是個NP-complete問題。我們研製出了數種解題條件與窮舉策略在演算法上的實現,並且比較了這幾種解決辦法的相對效率,再者也提出了數個NP問題的解決策略。本研究發現在進行窮舉的時候以取最小頂點值期望效率最高(表示該程式能有相對多,相對快的執行結果)。
> 更多
科展作品檢索
精油所至,病毒離開 – 利用分子模擬對接技術預測具新冠病毒防護力的精油
本研究使用電腦模擬藥物的對接技術,快速有效的預測新冠肺炎病毒潛力防護精油。第ㄧ階段研究依據化學分子分類蒐集82種精油成份,建立分子結構資料集與新冠肺炎病毒蛋白和人類受體蛋白ACE2共11種蛋白質結構資料集,使用AutoDock Vina 分子模擬對接技術,計算對接能量數值及溫度圖,預測潛力防護精油成分,並探討預測成效。根據對接結果數值,並與目前已發表研究成果交叉比對,預測效果達80%。因此第二階段以30種台灣常見精油之主要成分擴充精油分子資料集,進行分子模擬對接計算,預測具新冠病毒防護力的潛力常見精油。本次科展研究結果所得的潛力防護精油,不僅具深入研究價值,也為後疫情時代提供具高度參考性的生活防疫方式,用以保護我們身邊所愛的家人。
> 更多
本實驗之研究目的在找出繼光餅的最佳配方。以不同比例的麵粉、酵母粉和水溶液種類設計出三組實驗組、每組三種不同配方共7種(每組皆有一個原始配方),找出麵粉和酵母粉及水溶液對繼光餅的影響。本研究使用電腦軟體imagej測量氣孔數量、砝碼加壓法測量其硬度及回彈度、體積置換法來測量體積的改變,以科學化數據觀察,量化紀錄資料比較繼光餅本體外型和品評口感,綜合比較結果,最後第一組實驗以高筋麵粉、第二組以五克酵母粉、第三組以鮮奶口味為本研究最喜愛的配方。最後無添加酵母粉及更改水溶液為高粱酒的繼光餅不受到大家的喜愛。
> 更多
科展作品檢索
Development of an Android Application for Triage Prediction in Hospital Emergency Departments
Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.
> 更多