搜尋結果
查詢 電腦共找到 779筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

Method of prosthetic vision

This work is devoted to solving the problem of orientation in the space of visually impaired people. Working on the project, a new way of transmitting visual information through an acoustic channel was invented. In addition, was developed the device, which uses distance sensors to analyze the situation around a user. Thanks to the invented algorithm of transformation of the information about the position of the obstacle into the sound of a certain tone and intensity, this device allows the user to transmit subject-spatial information in real time. Currently, the device should use a facette locator made of 36 ultrasonic locators grouped in 12 sectors by the azimuth and 3 spatial cones by the angle. Data obtained in such a way is converted into its own note according to the following pattern : the angle of the place corresponds to octave, the azimuth corresponds to the note and the distance corresponds to the volume. The choice of the notes is not unambiguous. However, we used them for the reason that over the centuries, notes have had a felicitous way of layout on the frequency range and on the logarithmic scale. Therefore, the appearance of a new note in the total signal will not be muffled by a combination of other notes. Consequently, a blind person, moving around the room with the help of the tone and volume of the sound signals, will be able to assess the presence and location of all dangerous obstacles. After theoretical substantiation of the hypothesis and analysis of the available information, we started the production of prototypes of the devices that would implement the idea of transmitting information via the acoustic channel.

> 更多

科展作品檢索

彩色二維條碼手持產品開發之探討

QR Code是由黑白模組組成的二維數位條碼,掃描後可讀取儲存的訊息。受限於設計原理,QR Code使用二進位制儲存資料。增加模組數目可增加資料量,但若在條碼內塞進太多模組時,尺寸太小的模組將無法被掃描器讀取。此外,目前QR Code掃描器僅支援單張掃描,並無法應付同時多張條碼掃描的實務需求。 如能克服顏色辨識,理論上彩色二維條碼將能克服現行QR Code的限制,但市面上並無相關產品可供測試。因此本專題設計了一款10×10、具8顏色的"Colour Matrix",並利用Raspberry Pi開發Colour Matrix在手持裝置上運作的軟硬體來進行實驗。此實驗成功利用機器學習演算法在Raspberry Pi上進行的顏色辨識。開發的程式在單張掃描上效能與使用pyzbar辨識QR Code相當;在多張掃描方面,使用pyzbar辨識QR Code的解碼成功率為3.1%,而本專題的方法將成功率提升至92.4%,擴增數位條碼的使用範圍,具商用價值。

> 更多

科展作品檢索

Development of an Android Application for Triage Prediction in Hospital Emergency Departments

Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.

> 更多

科展作品檢索

基於觸控軌跡及裝置加速度資料提升年長者之觸控準確率

本研究使用機器學習方法,改善年長者使用手機時觸控系統對於點按位置判斷之能力。首先設計實驗比較年長者使用手機時,點按位置及手勢判斷的準確率,接著收集年長使用者的觸控軌跡及裝置相關資料,並訓練模型以減少系統判斷的錯誤率和誤差幅度。再比較及分析不同機器學習模型對於本研究之資料的適用程度及經校準後點按位置準確率的提升,進而挑選出一個能夠最有效提升點按位置準確率的模型進行點按位置的預測。實驗過後選擇最有效提升準確率的Random Forest Regressor進行其他的校正實驗及分析。使用者點按位置的預測準確率能被有效提升,準確率能提高32.3%。而最終,將訓練後的模型套回實驗用的手機程式,系統判斷受測者的點按位置能從原本的63.7%提升至97.5%。

> 更多

科展作品檢索

「澱」「資」的奧祕-利用網頁遊戲精進學生對沉澱表之研究

有鑑於高中選修化學相當困難,因此我們製作了一款有助於提升化學能力的遊戲。玩家必須活用沉澱表及化學來通過遊戲。蒐集離子球、並且按照要求合成出沉澱物或是酸鹼,來擊潰敵軍和敵方堡壘。 該遊戲是藉由網頁去宣傳的,因此我們需要一個平台去發布此遊戲,選擇了netlify這個平台。其中我們前端使用了三大前端程式,HTML、CSS、JavaScript,後端則利用Google試算表搭配Google APP Script去收集遊戲數據。最後,我們再利用AI演算法中的類神經網路分析,透過交叉比對找到玩家最有可能的成長結果。

> 更多

科展作品檢索

Automated Debugging System – Implementing Program Spectrum Analysis and Information Retrieval on Fault Localization

在程式專案開發中,偵測錯誤常為最耗時的環節,進而影響整個專案的開發時長。而現今雖有些許輔助開發者提升偵錯效能的工具,但這些工具也只能藉由提供編譯執行中的資訊讓開發者省去偵錯時的繁瑣步驟,仍須開發者自行評估每段程式碼的正確性。此研究透過程式段落分析與資訊檢索實現自動錯誤定位,在每個程式段落標記其成為臭蟲(bug)的可能性。在程式段落分析中,執行使用者之原始碼,並透過歸納最終結果為正確及錯誤之執行路徑差異分析出每個程式段落的可疑性。接著運用資訊檢索技術於資料庫中找尋相似之原始碼,並參考其偵錯結果優化現有之可疑性,形成最終之可疑性排名。此研究不只結合了上述兩種技術,更優化可疑程度之計算方法以及資訊檢索中的相似度比對機制,達到更完善的錯誤定位。(此指「臭蟲」非語法錯誤(Syntax Errors),而為邏輯錯誤(Logic Errors)。)

> 更多

科展作品檢索

應用網路爬蟲於社交軟體實現群眾互動平臺之研究

現今的大型活動,如:校慶活動、新北耶誕城等,缺乏互動性與參與感,其中原因大多是觀眾時常埋沒於手機中的社交軟體當中所導致。而我們的研究將利用此特性,探討大眾對於活動的觀點,搭配網路爬蟲抓取使用者的貼文,觀眾只需在Instagram、Twitter等社交軟體中發布文章,系統就會即時推播至活動中的大螢幕上,並且結合圖像辨識快速審核貼文,設計出一套能改善互動性低落的解決方案。研究中我們探討不同的網路爬蟲演算法、圖像辨識技術,及問卷調查等來使作品更加精進,且搭配Line Bot、後臺管理,及常駐貼文等功能來為各類大型活動量身打造,也能夠運用於政令宣導或文宣廣告等用途上,大幅提升活動的互動性與精采程度。

> 更多

科展作品檢索

小提琴音色的奧妙

小提琴主要是由琴弓帶動琴弦使提琴透過音柱與音箱振動而發出聲音,而琴身、琴橋、琴弦、拉弦板、肩墊、松香……等,這些因素都可能影響提琴的「音色」,但是多數人,是很難用耳朵聽出「音色的差異」,因為聲音既看不到也摸不著,所以希望透過傅立葉電腦軟體Audacity,來分析聲音的『頻譜圖』,用科學化的證據,讓非音樂專業人士,也能「看」到音色的差異,並利用頻譜圖與聲響學理論說明音色的奧妙,讓喜歡音樂的我們,找到適合的小提琴,也讓初學者或演奏者更容易找到合適的琴。 在關於小提琴音色的實驗裡,影響小提琴音色表現最主要的因素是松香和琴弦。我希望將松香與琴弦所產生的音色用科學方法分析,建立資料庫,讓演奏者很快找到適合的松香或琴弦。

> 更多

科展作品檢索

Solving Mathematical and Chemical Equations using Python

Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.

> 更多

科展作品檢索

Solving Mathematical and Chemical Equations using Python

Max Gold's project, titled “Solving Mathematical and Chemical Equations using Python”, is a website comprising of 4 main programmes: one to find the smallest possible combination of two chemical compounds or elements; a self-made parsing function to convert a chemical equation into a matrix, then using Gaussian-Jordan elimination to find coefficients for an equation; a programme to parse a mathematical expression and use that parsed expression in algebraic division of an algebraic dividend of nth degree polynomial by a divisor of 1st degree polynomial; finally, a programme to solve binomial equations for the power s∈Q. This website was originally made so that Max Gold could improve his programming skills for GCSE computer science but expanded to incorporate his passion for chemistry and maths and thus allow others to use these programmes to help them with their problems as well. A problem with many conventional calculator websites is their lack of specificity – they tend to be able to compute some functions but not all. These programmes are tailored to GCSE and A level maths and chemistry, meaning this website provides an outlet to compute specific topics of problems.

> 更多

科展作品檢索

以深度學習與遷移學習防範社群媒體片面新聞訊息之研究

現代民眾獲取新聞的途徑逐漸轉移到網路媒體,然而在網路資訊快速傳播以及媒體為追求報導曝光度以增加金錢利益的情形下,片面、誘導等形式的新聞標題與短句訊息在新聞媒體傳播中日益嚴重;本次研究透過Fake News Challenge提供的Stance Detection dataset,運用深度學習與遷移學習方法訓練可預測兩文本之間相關程度的自然語言處理模型,在過程中改善調參及訓練方式,並將其實際運用在預測美國新聞媒體於Facebook網路社群平台發文推播新聞的同時所附的短句與新聞報導文本內容之間的相關關係程度,分析社群平台中新聞可能造成的誤導式文句是否實際造成片面報導,而影響了受眾對於媒體的使用程度與信任程度。使此模型有助即時預警社群平台上的報導資訊型態品質,輔助使用者獲取新聞時所應具備的媒體識讀能力,進而改善片面報導於網路的流竄,同時提升未來媒體生態。

> 更多

科展作品檢索

摘要演算法和語句分析之關聯性

在這個資訊發達的時代,網路充滿著五花八門的資訊,導致我們在查詢資料時會因為這些雜亂且未經過濾的資料浪費許多時間,其中最為氾濫的便是點擊誘餌(clickbait),此種新聞常常有著吸引人的標題,而內容卻不會與主題相符,人們也常常在讀完整篇文章後才意識到自己浪費了許多時間在無意義的資訊上面。解決此問題很常用的方法之一便是運用摘要演算法來讓讀者先對新聞有一個大概的理解,不過,雖然摘要演算法越來越普及,但產生出來的摘要仍會和人為判斷的結果有所差距,進而造成閱讀理解上的錯誤以及偏差,所以我們想要藉由這次研究,從一個嶄新的角度切入,探討摘要演算法和句型分析之間的關係,融合原本向量建構的方式以及語句結構的分析來測試摘要的準確度,並且由結果研發出一個可以產生出更為精確的主旨之摘要演算法,除此之外,我們也會融合實地調查以及搜集意見的方式來更進一步探討人們思模式與產生出的摘要之關聯性。

> 更多