搜尋結果
查詢
電腦共找到
881筆。
如查無相關資訊,可至
進階搜尋
進行查詢
科展作品檢索
整合姿勢辨識暨空間辨識以二維圖像實現三維空間物件相關性判定之口罩配戴正確性檢測系統
2019年新型冠狀病毒的大流行,佩戴口罩已成為全球防止飛沫傳播病毒成本最低且有效的方法,目前雖已有團隊針對口罩有無正確配戴提出解決方案,但根據收集的資料,目前針對口罩有無正確配戴解決方案通常是使用類神經網路YOLO進行實作,YOLO使用於口罩辨識雖可達到有一定的效果,但對口鼻密合度不佳的細微狀態常有一些誤判的現象,就算民眾有配戴口罩,但若未與臉部、口鼻密合,仍有50%的空氣洩漏機會,無法有效阻隔飛沫傳染,形成防疫破口。 而本研究在這樣的基礎架構下再整合目前最強大的姿勢辨識之一的OpenPose,針對口罩與口鼻密合度不佳的細微狀態進行更深一步地探討,以期達到更好的偵測判斷效果。本研究針對的改善的方向為當神經網路YOLO判定為有配戴正確的資料時,再利用OpenPose以及本研究開發出的鼻心物件演算法,就鼻部密合度做細部偵測,進行誤判修正,最後證實出本算法能篩出56.25%被神經網路YOLO誤判為有戴好口罩的資料,可顯著提升口罩配戴辨識精準度,減少形成防疫破口的機會。
> 更多
情緒辨識是增進人際溝通的重要能力。如生命線、電話客服等應用情境缺乏表情、肢體語言等輔助時,單以語音進行情緒辨識有極高的實用價值。 本研究探討比較支持向量機(SVM)及卷積神經網路(CNN)兩種機器學習方法於訓練「AI語音情緒辨識」分類器模型的表現。我們採用SAVEE和RAVDESS兩個英文語音資料庫,並自行製作與標註「逼逼中文情緒語料庫」。研究結果顯示SVM對SAVEE資料庫單一情緒的辨識正確率達84~94%,個別錄音員正確率達75%,超越官網紀錄的73.7%。同時,實驗顯示深度學習的模型在訓練資料不足的狀況下,反而相對遜色。
> 更多
科展作品檢索
Development of an Android Application for Triage Prediction in Hospital Emergency Departments
Triage is the process by which nurses manage hospital emergency departments by assigning patients varying degrees of urgency. While triage algorithms such as the Emergency Severity Index (ESI) have been standardized worldwide, many of them are highly inconsistent, which could endanger the lives of thousands of patients. One way to improve on nurses’ accuracy is to use machine learning models (ML), which can learn from past data to make predictions. We tested six ML models: random forest, XGBoost, logistic regression, support vector machines, k-nearest neighbors, and multilayer perceptron. These models were tasked with predicting whether a patient would be admitted to the intensive care unit (ICU), another unit in the hospital, or be discharged. After training on data from more than 30,000 patients and testing using 10-fold cross-validation, we found that all six models outperformed ESI. Of the six, the random forest model achieved the highest average accuracy in predicting both ICU admission (81% vs. 69% using ESI; p<0.001) and hospitalization (75% vs. 57%; p<0.001). These models were then added to an Android application, which would accept patient data, predict their triage, and then add them to a priority-ordered waiting list. This approach may offer significant advantages over conventional triage: mainly, it has a higher accuracy than nurses and returns predictions instantaneously. It could also stand-in for triage nurses entirely in disasters, where medical personnel must deal with a large influx of patients in a short amount of time.
> 更多
QR Code是由黑白模組組成的二維數位條碼,掃描後可讀取儲存的訊息。受限於設計原理,QR Code使用二進位制儲存資料。增加模組數目可增加資料量,但若在條碼內塞進太多模組時,尺寸太小的模組將無法被掃描器讀取。此外,目前QR Code掃描器僅支援單張掃描,並無法應付同時多張條碼掃描的實務需求。 如能克服顏色辨識,理論上彩色二維條碼將能克服現行QR Code的限制,但市面上並無相關產品可供測試。因此本專題設計了一款10×10、具8顏色的"Colour Matrix",並利用Raspberry Pi開發Colour Matrix在手持裝置上運作的軟硬體來進行實驗。此實驗成功利用機器學習演算法在Raspberry Pi上進行的顏色辨識。開發的程式在單張掃描上效能與使用pyzbar辨識QR Code相當;在多張掃描方面,使用pyzbar辨識QR Code的解碼成功率為3.1%,而本專題的方法將成功率提升至92.4%,擴增數位條碼的使用範圍,具商用價值。
> 更多
科展作品檢索
惡意程式無所遁形—以自然語言處理模型實現惡意程式之識別
本研究旨在運用自然語言處理技術,建立辨識惡意程式的模型。首先搜集良性及惡意執行檔,進行反組譯及前處理以建立資料集。使用反組譯後的組合語言檔作為文本,訓練模型以區分良性和惡意程式。研究比較詞袋模型、序列模型、fastText以及不同n-gram對模型的影響,並將結果與其他相似研究比較。 研究結果顯示。詞袋模型以使用multi-hot編碼表現最佳,序列模型有位置編碼的Transformer encoder表現最優。在不同n-gram的比較,2-gram詞袋模型識別惡意程式達到99.6%的F1-score,且本研究的識別準確率優於其他相似研究。
> 更多
科展作品檢索
Deep learning on Covid-19 prediction and X-ray severity grading system
利用深度學習解決醫學問題一直是受矚目的研究主題。鑒於近期新冠肺炎疫情上升,有關新冠肺炎檢測的研究便成了熱門研究主題。目前,最有效的檢測方法是聚合酶連鎖反應 (PCR),然而,PCR耗時甚久且有人為誤差。因此,以X光影像圖透過深度學習來診斷並分級是一個有效率且安全的做法。在研究中,我們利用深度學習進行疾病診斷,在五元分類上有相當高的準確率(84.91%)、在COVID-19單獨辨識時得到了極高的準確率(99.35%)、產生出疾病熱區及設計了新的分級系統( X-ray Severity Grading System , XSGS),並將其用於嚴重程度分類,在不同分級下具有可辨別的差異。
> 更多
本研究製作出一個可以自動對準太陽光的裝置「太陽光全自動集光追蹤系統」(以下簡稱本系統),使太陽能板面朝太陽。本研究也使用微電腦控制器(Arduino、ESP32)進行發電效率的自動記錄,可以在架設太陽能板前利用本系統進行評估。實驗數據顯示裝設菲涅爾透鏡可以增加發電量。若使用本系統,可提升發電量。本系統加上太陽能控制器及鋰電池,可以進行太陽能的管理與儲存,是具有實用性的綠能裝置。
> 更多
新冠肺炎疫情期間,拍攝不少戴口罩的照片,但人們希望能保留未戴口罩照片,為了解決這個問題,本研究建構人臉口罩去除系統,給予無口罩覆蓋的來源圖片作為參考,透過擷取人臉和口罩輪廓的特徵點,進行人臉置換、圖像填補與色彩優化等步驟,對於戴口罩圖片的口罩區域進行人臉復原。 本研究透過校正戴口罩人臉特徵點的誤差,設計改良演算法精準地偵測口罩區域,利用輪廓偵測演算法擷取口罩輪廓特徵點框出區域,將來源圖片的對應區域置換到戴口罩圖片上,並使用圖像填補技術修復填補口罩置換後的殘影,再對圖片置換的拼接處進行色彩優化,讓整體臉部膚色具一致性,經成效評估驗證,成功自然地將戴口罩圖片復原為未戴口罩的真實樣貌。
> 更多
科展作品檢索
「澱」「資」的奧祕-利用網頁遊戲精進學生對沉澱表之研究
有鑑於高中選修化學相當困難,因此我們製作了一款有助於提升化學能力的遊戲。玩家必須活用沉澱表及化學來通過遊戲。蒐集離子球、並且按照要求合成出沉澱物或是酸鹼,來擊潰敵軍和敵方堡壘。 該遊戲是藉由網頁去宣傳的,因此我們需要一個平台去發布此遊戲,選擇了netlify這個平台。其中我們前端使用了三大前端程式,HTML、CSS、JavaScript,後端則利用Google試算表搭配Google APP Script去收集遊戲數據。最後,我們再利用AI演算法中的類神經網路分析,透過交叉比對找到玩家最有可能的成長結果。
> 更多
科展作品檢索
基於觸控軌跡及裝置加速度資料提升年長者之觸控準確率
本研究使用機器學習方法,改善年長者使用手機時觸控系統對於點按位置判斷之能力。首先設計實驗比較年長者使用手機時,點按位置及手勢判斷的準確率,接著收集年長使用者的觸控軌跡及裝置相關資料,並訓練模型以減少系統判斷的錯誤率和誤差幅度。再比較及分析不同機器學習模型對於本研究之資料的適用程度及經校準後點按位置準確率的提升,進而挑選出一個能夠最有效提升點按位置準確率的模型進行點按位置的預測。實驗過後選擇最有效提升準確率的Random Forest Regressor進行其他的校正實驗及分析。使用者點按位置的預測準確率能被有效提升,準確率能提高32.3%。而最終,將訓練後的模型套回實驗用的手機程式,系統判斷受測者的點按位置能從原本的63.7%提升至97.5%。
> 更多
科展作品檢索
Automated Debugging System – Implementing Program Spectrum Analysis and Information Retrieval on Fault Localization
在程式專案開發中,偵測錯誤常為最耗時的環節,進而影響整個專案的開發時長。而現今雖有些許輔助開發者提升偵錯效能的工具,但這些工具也只能藉由提供編譯執行中的資訊讓開發者省去偵錯時的繁瑣步驟,仍須開發者自行評估每段程式碼的正確性。此研究透過程式段落分析與資訊檢索實現自動錯誤定位,在每個程式段落標記其成為臭蟲(bug)的可能性。在程式段落分析中,執行使用者之原始碼,並透過歸納最終結果為正確及錯誤之執行路徑差異分析出每個程式段落的可疑性。接著運用資訊檢索技術於資料庫中找尋相似之原始碼,並參考其偵錯結果優化現有之可疑性,形成最終之可疑性排名。此研究不只結合了上述兩種技術,更優化可疑程度之計算方法以及資訊檢索中的相似度比對機制,達到更完善的錯誤定位。(此指「臭蟲」非語法錯誤(Syntax Errors),而為邏輯錯誤(Logic Errors)。)
> 更多
科展作品檢索
以深度學習與遷移學習防範社群媒體片面新聞訊息之研究
現代民眾獲取新聞的途徑逐漸轉移到網路媒體,然而在網路資訊快速傳播以及媒體為追求報導曝光度以增加金錢利益的情形下,片面、誘導等形式的新聞標題與短句訊息在新聞媒體傳播中日益嚴重;本次研究透過Fake News Challenge提供的Stance Detection dataset,運用深度學習與遷移學習方法訓練可預測兩文本之間相關程度的自然語言處理模型,在過程中改善調參及訓練方式,並將其實際運用在預測美國新聞媒體於Facebook網路社群平台發文推播新聞的同時所附的短句與新聞報導文本內容之間的相關關係程度,分析社群平台中新聞可能造成的誤導式文句是否實際造成片面報導,而影響了受眾對於媒體的使用程度與信任程度。使此模型有助即時預警社群平台上的報導資訊型態品質,輔助使用者獲取新聞時所應具備的媒體識讀能力,進而改善片面報導於網路的流竄,同時提升未來媒體生態。
> 更多