搜尋結果
查詢
電腦共找到
881筆。
如查無相關資訊,可至
進階搜尋
進行查詢
Chemistry experiments in school produce an abundance of waste in both materials and equipment. Since hands-on experimentation is a critical pedagogical tool the trend in classroom experimentation is clearly towards environmentally friendly experiments that scale, but was also able to measure reaction rate in blue cupric sulfate solution using the color dissipation as a rate gauge. There was an evolution of apparatus and experiment design beginning with simple magnifying glass optics and advancing to a custom made, light-gathering microscope video apparatus that allows the experiment to be monitored and files recorded for later viewing. I was inspired by the Yin Yang Sea phenomenon in Taipei County. The Yin Yang Sea is a coastal area in Chinkuashih, Taipei County where coastal currents in the area lack the strength to disperse the heavy metal pollutants that empty into the Lientung Bay. The result is a contrast between the blue sea water and the turgid yellow ground water. This contrast led me to add an all-purpose indicator to the reactant solution. This deepens the visual effect of the electrolysis experiment. 我們從環境保護的角度去思考學校的化學實驗時,減量減廢的微型化學實驗已是未來實驗的趨勢。經過多年的努力,我除了成功的做到電解最微量的一滴溶液外,對於從藍色硫酸銅溶液顏色消失的電解時間裡,還可做定量的檢定感到不可思議!為了更清楚看到液滴溶液的電解反應,儀器的設計由放大鏡到自組顯微投影機,最後進階到顯微視訊的畫面,它不但可記錄下來,而且可在電腦中播放。為了更清楚看到液滴溶液的氧化還原反應和酸鹼變化,我想到了在北台灣的金瓜石海域一處特別的景觀,那就是離岸近海處有黃藍兩個不同顏色的陰陽海!於是我加了廣用指示劑到液滴中,由電解後出現的的陰陽海畫面,更可加深實驗的效果。 最重要的是:最環保也最接近零污染的顯微化學實驗,已然是未來可發展下去的目標。
> 更多
C.A.I是目前教育發展的趨勢,有感於國內高中數學教育軟體設計的缺乏,故製作此課程,希望能引發各界對C.A.I的熱忱,讓C.A.I在國內蓬勃發展。
> 更多
本研究運用兩套方法,成功的化簡、篩選眾多結構;配合繪圖檢驗,證明了六邊形共有20種對稱拼貼圖結構。透過本研究,在適當軟體的支援下,使用者可快速且精準的設計出富有創意的密貼圖樣;所有的圖形結構亦可被更加廣泛運用。運用本研究理論與結果,我們撰寫了一Visual Basic程式,可供使用者快速方便判別任意的六邊形磁磚是否可對稱拼貼;最後,我們將研究結果應用於相關立體圖形,如:環面(Torus)、圓柱曲面(Cylinders)及莫比紙圈(Mobius Strip);運用前人的研究,再配合本研究結果,將可以有更廣泛的應用,如:阿基米德立體圖….等。
> 更多
科展作品檢索
國中物理科電腦輔助教學-(物理學習障礙分析程式)
本系統設計的目的有兩個方向:1.學生自我輔導由於微電腦年來逐漸普及,不久的將來每一所學校都將擁有一間電腦教室,如果有一天,有一位叫李四的學生,他在課堂上剛學過國中物理第x 章,他不知道自己到底學得怎麼樣!問題在那裹?於是他利用自修時問,到電腦教室,他先到資料管理室借到了第 x章的學習障礙分析磁片,在電腦前他作答了將近十幾個經過特別設計的題目,最後電腦送出了一張報表告訴他此章節的成績,以及他在這章節中沒有學習好的地方如P9、10,並告訴他如何補救,並建議他進一步接受單元輔助教學!於是李四注意到在報表中所列的學習障礙中有一個 y單元的確令他頭疼,於是他又出現在資料管理室,除了歸還學習障礙分析磁片,他又借出了y 單元的輔教磁片,這個活動他最喜歡,就像以前打電動玩具一樣,非常精彩,而且電腦非常有耐性的反覆演示他比較不懂的地方,半小時後李四已經很愉快的在操場打球了,因為今天上的物理他已有十成的把握了!2.實際教學上的應用:教師在課堂上教完一個章節後,便可在電腦教室為學生們作學習障礙分析活動,作完後可再利用電腦產生一張該班學生學習障礙的統計圖(如圖 281 頁附圖)。從這圖上,教師可 看出他的學生在這一章節中普遍及各人的學習障礙在那裹,以作為再教學的參考,進一步再指導學生針對學習障礙,作團體或個別的輔助教學,更可從鋪助教學巾看到學生學習的流程,以及積分,如此教師就幾乎可完全掌握學生的學習狀況了!在目前,祇要校中有一套微電腦,教師就可充份利用電腦輔教系統,以解決教學上一些不容易在教室或實驗室演示的實驗的問題,並可利用輔教系統中精彩的畫面與聲音,引起學生們學習的興趣!
> 更多
科展作品檢索
電解質離子錯合與聚合效應之研究暨電腦化學分析系統之設計與製作
筆者曾於二十屆科展發表作品「﹝( Cu(NH3)﹞SO4,H2O 之定性定量分析雙分析儀器自製」,本研究乃繼此之系列研 究。在為期兩年的研究中,筆者利用各種物理化學分析法,並配合電腦處理系統,來對離子之錯合與聚合行為,做更廣泛,更深入的研究。
> 更多
偶然在中國時報的科學專欄中,看到一個有趣的數學問題,名為「數學方塊」,題目是: 在一個正方形的四角寫上任意四個正整數,鄰角數值差的絕對值寫在共同邊上的中點,將此四邊中點連接再畫一個正方形,重複這個程序,最後有一個方塊的四個中點數數為零,如圖(一),為了方便,我們將上述計算程序稱為"運算"。
圖一 任意四個整為9,5 ,7,2 這個“運算”規則簡單,只要懂算術的學齡兒童都會,但其中蘊含的一些觀念和定理卻很奧妙,值得深入推敲,今我們想要探討下列幾個目的: (一)設計四個整數(正、負皆可)能重覆“運算”之電腦繪圖程式,操作實驗,驗證最後一個方塊的中點數是否都為零。 (二)證明四個整數經“運算”後必得四個整數皆為零。 (三)設計 23、 24、 25 個整數能重複“運算”之電腦列表程式,操作實驗,驗證最後一列的所有整數是否都會是零? (四)用數學理論證明2n個整數經此“運算”,最後亦可得全是零。
> 更多
路邊停車時,總需要三番兩次的調移車身,過程些許費時,因此,嘗試推算一次順利進出車格之軌跡。我們以開出停車格之軌跡做探討,軌跡建立之後再依循所建軌跡供車輛倒車行駛。為了能順利一次路邊停車,我們設定方向盤轉動量最大,讓前輪達到最大轉向角θ(一般車輛是35度),以取得最小迴轉半徑R,利用車輛基本性質,包括:車前懸a、前後輪軸距b、車後懸c及車寬d,推導計算最小迴轉半徑R,所代出之公式經模擬實驗,其誤差率均小於5%,值得引為後續研究之用。於路邊停車軌跡部分,先探討車輛出車格之軌跡,包括:左轉、直行及右轉軌跡,三個軌跡的反向連續軌跡,即為路邊停車時倒車的應行進軌跡。於倒車入庫軌跡部份,則包含直行及右轉軌跡兩部份。最後,對於誤差修正之探討,我們提出所謂前輪轉動受「軸承」控制之計算觀念,將車輪轉動中心砌合實際狀況轉移,於給定承軸及輪胎外側圓心之距時,將有更精密之數據展現。
> 更多
科展作品檢索
以自製的反應儀器研究鹽類對雙氧水分解反應的影響
本研究是以自製的反應儀器全程監控雙氧水加入不同的三價鐵鹽中,伴隨著氧化還原及催化分解產生氧氣的全部過程,其設計流程如下: 反應器→排水集器法→虎克定律→滑尺感測→A/D電路→電腦將雙氧水分解出的氧氣,利用集水桶收集,集水桶的重量向下拉動滑尺,使其感應部分通過光遮斷器,藉由A/D 電路,電腦收集電壓與時間的數據,再配合校準線的資料繪出反應速率與時間的關係圖。研究結果顯示三價鐵鹽中,Fe(NO3)3 和FeCl3 的反應情況較類似,氧氣的產生很快達最高速率,其最大反應速率值約在0.4ml/s-0.6ml/s 上下,但反應也很快完成。Fe2(SO4)3 的反應情況較溫和平緩,慢慢提升其反應速率,且其最大反應速率也較小,約在0.1ml/s-0.2ml/s 上下。藉此研究結果,若要利用雙氧水的氧化力應用於工業的污水處理上,Fe(NO3)3 和FeCl3 較適於速效性(如旺季,訂單大量,產生廢水量較大之行業); Fe2(SO4)3 較適於長效性(如淡季時,不景氣,產生廢水量較少較緩之行業)。若鐵生成穩定錯離子後,其反應速率皆較慢,實驗結果其最大反應速率值約在 0.01ml/s-0.02ml/s 上下,速率比非錯鹽的鐵鹽慢了十倍多。其中Fe(CN)63-,圖形與FeCl3類似,其餘其反應速率較近於定值,可將此結果應用於日常生活中需較固定氧氣產生,而其速率不必很大處(如水族箱之氧氣供應,燃料電池之氧氣供應)。
> 更多
「完美正方形」是指在一正方形內切割出大小都相異的小正方形。而我們的研究,則放寬條件,允許同樣大小的正方形不超過三個。我們先估算出正方形中可切割的最大正方形邊長範圍,再以方格紙手畫的方式找出邊長1至25 的解,在過程中,我們發現可用放大的方式解決邊長為合數的正方形。因此我們將重點放在邊長為質數的正方形,我們將正方形分割成兩個連續整數邊長的正方形,則剩下少一單位的缺角正方形區域。我們探討缺角正方形區域的解,再討論分析回原來的正方形。最後解出了邊長1 至100 中全部有解的正方形。對於更大邊長的正方形,我們的方法也可行。所以我們以流程圖來表示解決問題的過程,並用電腦試算邊長1 至1000 的完美正方形。
> 更多
於高一基礎生物第三章生命的維持,內容談到骨骼肌的構造,骨骼肌是一種橫紋肌,有明帶和暗帶的橫紋,而有兩z線間,有兩種與z線垂直的肌絲,其中細肌絲為肌動蛋白,粗肌絲為肌凝蛋白,肌肉收縮時,乃z線與z線相互靠近,肌纖維乃到整塊肌肉隨之縮短,此即為肌肉收縮。 我們很想了解更詳細的內容,因此請老師講解,並提供資料,經過仔細推敲之後,仍然不能夠有完整清晰的概念,問題關鍵在課本圖形為平面,若能夠有立體簡易的模型,則可能有助於我們對問題的認識,因此我們開始收集並閱讀有關的資料和書籍如大學生物學、普通動物學、組織學等。待肌纖維模型雛形已成後,我們並同時配合電腦來處理動態及靜態肌纖維收縮型態。
> 更多
在此次的科展中,我們將利用高中數論所學的同餘運算,來進行加解密計算。並利用橢圓曲線逆運算不易的幾何特點[4][5],來確保明文加密後的安全理論並設計出結合中文加密模式。我們研究結果如下:一. 公式分析:我們先引用橢圓曲線的加解密運算式分析出它的數學原理,進而推算出其關係式以進行電腦演算。二. 演算法內容分析:由公式分析出的結果,我們開始為每一個中文明文進行編碼,並歸納出其關係式來推論出可用的加密點。三. 由橢圓曲線上的可加密點來進行中文注音及標點符號的編碼,並以馬致遠的「天淨沙」來實作出我們模擬的成果。
> 更多
科展作品檢索
利用電腦改進滑車實驗─時閒的測量與資料的處理
記得理化課中,有個利用滑車來證明“牛頓第二運動定律”的實驗。實驗中我們發現:由於滑車速度太快,使我們無法測量到精確的時問,各組求出的加速度也差異很大,繪圖更浪費了很多時間,而且也歪七扭八,與課本說的完全不同。三年級的資訊課中,我們了解了電腦的功用,便想結合理化與電腦,以最普遍的現代科技來輔助時間的測量、幫忙整理資料,改善這個實驗。
> 更多