原題目是環球城市盃中,一個圖論的問題。而題目提供了一個證明,是證 明此種連線都是偶數的圖形,一定會在三的倍數邊形成立。在經過一番思考過 後,我們希望能將原本的偶數連線性質加以驗證,並確定奇存在性。此時,我們 也不禁聯想到:奇數是否也有所特別的性質。因此,我們也向奇數連線做研究。 就在平面得到了部分結論的同時,我們想到這個問題是否可以推廣至三維 空間。然而在推至三維空間的過程中,我們又聯想到,另一種平面:球面。在球 面上放點,能否也找到一些不同的性質。因此,我們分別從平面、球面、立體圖 下手。 基本上,探討平面和立體問題的方法,是以土法煉鋼的方式來求出結果。 然而這種圖論的問題,不可能嘗試到無限多點的情形。因此,我們是著找出一個 關鍵的key,那就是結合性質和外接合性質。以這兩種方法,我們可以將一個簡 單的基本圖形,推向無限多點和無限多邊的情況。 接下來,還有討論一些特殊狀況,例如: deg v=3n+1,探討其結果。 最後得到的結論是: 1、平面偶圖成立的條件為:此多邊形為三倍數邊形, 而且除了內 部一、二、四點以外, 其他點數都可以成為偶圖。 2、平面奇圖成立的條件為:奇數邊形的情形下,除了三點以外,其 他的內部奇數點的都可以成為奇圖。偶數情形下, 除了四 點以外, 其他的內部奇數點的都可以成為偶圖。 3、三角形平面圖,d eg n 皆為m 成立的條件:2< m< 6( m? N ) 4、三角形內外任意點d eg 皆為3n ( n ? N )的成立條件: 三角形內部4 x+1 個點( x ? N )。 5、三角形內外任意點d eg 皆為3n+1 ( n ? N )的成立條件: 三角形內部3 x 個點( x ? N )。 6、立體偶圖n 頂點(n>4)面體的成立條件為: 內部點數為5m+ n- 3、5m+ n- 1、5m+ n、5m+ n +1、5m+ n +3。(m 為大於或等於零的整數) 7、立體奇圖四面體的成立條件為: 內部點數為偶數皆存在。 The original problem is a question of Graph Theory in IMTOT ,which provides\r a proof that proving the figure which its linking-line number is even ,should also be\r contented in the triple-sides figure. After profound consideration ,we try to make sure\r the existence of the properties the we mentioned above. Meanwhile ,it also occurs to\r us that whether the properties would be contented ,in the figure which its linking-line\r number is odd. So we make our way to it. Additionally ,three-dimensional and\r spherical figures are part of our research as well.\r Basically ,we discuss the problem in two-dimensional and three-dimensional\r aspects with the simplest method .However ,it is impossible to discuss the problem in\r unlimited dots .Hence , we are going to find a “key” to solve this problem .As a\r result ,we can find a simple basic-picture , and expand to infinite-multiple lateral\r pictures.\r Next step ,we also discussed some special situations , for example: for each\r point v , deg v=3n+1.\r At last the conclusion is following:\r 1、The conditions of linking-line number is even: triple-sides. And the amount of\r points inside the figure is without 1,2,and 3.\r 2、The conditions of linking-line number is odd: In the odd-sides figure , all number\r of the points inside the figure can be content without 3 point. In the even-sides\r figure , all number of the points inside the figure can be content without 4 point.\r 3、In a triangle , each point’s deg is the same number m: 2
> 更多