搜尋結果
查詢 共找到 14829筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

從「碟仙」到「梅杜莎」-海月水母碟狀幼體養殖之探討

水族館中展示的水母缸,水母們優游自在的漂浮著,極受歡迎。但我們對水母的了解卻甚少,水母是很特別的生物,它有有性世代,和無性世代。當水母交配後,受精卵會孵化成浮浪幼蟲,浮浪幼蟲會固著在介質上形成水螅體,水螅體還會複製分化,當水溫變化超過攝氏4度,水螅體開始形成橫列型態,出芽分裂形成碟狀幼體,碟狀幼體再發育成水母體。 我們嘗試養殖海月水母的碟狀幼體(Ephyra)世代,除了瞭解碟狀體轉變成稚水母(Medusa)的變化過程,更嘗試做遮光與不遮光餵食餌料生物豐年蝦與輪蟲。發現遮光飼養輪蟲存活率最高,遮光飼養豐年蝦生長速度最快。此外我們還設計了不同溫度、鹽度與水質實驗,來了解海月水母碟狀體對環境的耐受度。

> 更多

科展作品檢索

地下礦工-崎頂子母隧道台灣大蟋蟀生態族群行為之研究

本研究以台灣大蟋蟀(Brachytrupes portentosus)為研究樣本,選定苗栗縣竹南鎮崎頂子母隧道作為研究樣區,探討族群數量變化與生態習性。將樣區劃分為A、B、C三個,並於2023年7月至2024年12月進行一年半的觀察記錄。結果顯示,台灣大蟋蟀的洞穴數量會隨季節與環境條件變化。春季平均孔洞數為35(個/月),夏季增至51(個/月),秋季則降至7個(個/月),冬季回升至16個(個/月)。數據顯示,秋季孔洞數量最少,推測與成蟲繁殖週期有關;夏季為終齡若蟲活躍期,孔洞數量達到最高峰。此外,飼養觀察發現台灣大蟋蟀具有藏食行為,會將食物帶回洞穴內食用,甚至將部分食物堆置於特定區域。這項發現顯示台灣大蟋蟀具備特定的食物儲存策略,對其生態適應性與行為提供新的研究視角。

> 更多

科展作品檢索

我不是蟑螂!別再嫌我髒—潮間帶奇異海蟑螂Ligia exotica之食性及生物學研究

本研究深入探討奇異海蟑螂(Ligia exotica)的生物學特徵及食性行為。從出生到成熟需經歷約18次退殼,耗時約200天。其繁殖行為極具特點:雄性找到即將退殼的雌性個體進行交疊,一旦雌性退「後段」殼,雄性便開始進行多次交尾,接著雌雄分開,雌性便會退去「前段」殼以便於抱卵,抱卵大約需20天。 此外,奇異海蟑螂並非潮間帶的清潔者,雖然單一食物情況下少量攝食腐屍,但並無有效機制能找到腐敗屍體,且在周圍有濕綠藻情況下,會以綠藻為食。此類海蟑螂通常棲息於高潮帶的潮濕岩石下,受到濕度、綠藻分布及潮水變化的影響,活動範圍隨之變化,冬季高潮帶潮濕且綠藻豐富,較少移動位置;但夏季時高潮帶綠藻乾死,會迫使海蟑螂在退潮時往中低潮帶移動。

> 更多

科展作品檢索

聲音農藥? - 探究自然環境聲音對植物向性與化學防禦影響之研究

本研究探討自然聲音對植物生長與防禦機制的影響,並評估「聲音農藥」在農業中的應用潛力。我們測試了流水聲、雨水聲對黑豆發芽與植株生長時其根生長向性的影響,以及蟲啃咬聲對小白菜葉片被害程度及防禦機制的影響。結果顯示,在流水聲與雨水聲環境下,黑豆植株的根部傾向於朝向聲源方向生長,尤其在缺水環境下更加明顯,顯示植物可能利用聲音信號調控根部生長方向。此外當小白菜暴露於蟲啃咬聲時,其揮發性有機化合物(TVOC)釋放量增加並有效降低紋白蝶幼蟲的啃食行為,證明聲音刺激可觸發植物的防禦機制。 本研究的發現支持了聲音可作為非侵入性環境因子來影響植物生理反應,並為未來發展環保型農業防治技術提供了新的視角。

> 更多

科展作品檢索

新住民的美麗與哀愁~探究泰國小紅翅竹節蟲的生存適應妙方

本研究在一年多的人為圈養環境中,以番石榴葉飼養下來觀察、記錄、統計分析後發現:泰國小紅翅竹節蟲在溫度20〜33℃溼度50〜80%照度0〜250Lux之間均能正常成長,卵期約六個月,成長週期283天分七或八個齡別:一齡成長天數約15天,二〜五齡17天,六齡19天,七齡21天,八齡成蟲157天;一生多停駐植株上段就近取食共約4528.96cm²,八齡食量最大,約產下250顆卵但只有少數能發育為成蟲且都是雌蟲,在受干擾時會展開鮮紅小後翅來嚇阻對方。 對於校園植物-芒果等九種均會取食;在日夜顛倒照度置換下,動靜態行為均受光線影響;喜歡攀高取食,同時場域變大即不會發生搶食。 未來可防範未然,規劃外來種昆蟲在大量入侵時的因應,或許可以尋求一種和平共處的生態模式。

> 更多

科展作品檢索

純「翠」力,輕鬆控草-翠盧莉水萃液應用於雜草管理之可行性初探

發現翠盧莉所在處周圍雜草稀少,實驗利用翠盧莉莖、葉水萃液對大花咸豐草、牛筋草、小白菜、福山萵苣和玉米種子進行發芽測定,觀察蔬菜幼苗生長情形,並使用葉水萃液澆灌野外種子土,測試對不特定雜草種子發芽及幼苗生長影響,再用碘滴定法試驗水萃液的抗氧化力。結果顯示:翠盧莉葉水萃液對種子發芽抑制效果最佳,且濃度越高效果越好。實驗室25°C以5%葉水萃液浸潤,對大花咸豐草發芽抑制率達100%;以8%澆灌野外種子土,對大花咸豐草種子發芽抑制率達95%。5%莖、葉水萃液具良好抗氧化力,與文獻提到化感作用中效果較強的酚類化合物,具有高抗氧化力的資料一致。因此推論翠盧莉可藉由淋溶作用,影響植物萌發與生長。

> 更多

科展作品檢索

溫塑效應

隨外送餐飲盛行,熱食頻繁接觸塑膠容器,潛藏釋毒風險。本研究以920株小白菜進行水耕栽培,探討多種塑膠袋、塑膠瓶與保鮮膜經100°C處理後的溶出物對植物生長之影響,並結合 IAA 生長素模型推估其作用機制。實驗結果顯示,高溫處理後塑膠溶出物明顯提高小白菜矮化比例,其中以PVC 保鮮膜最嚴重,短期矮化率達41%。推估其作用濃度由10⁻⁴ ppm上升至10⁻² ppm,呈現濃度依賴性干擾。另以TDS值監測樣本水質,發現TDS偏低時常伴隨萌發率下降,單憑TDS難以反映實際毒性。本研究驗證高溫塑膠容器可能釋出具生理活性的物質,小白菜可作為早期生物指標。結果亦顯示高溫塑膠溶出物影響生物生理,對食品安全與環境健康構成潛在風險,建議避免以塑膠容器長時間盛裝高溫食物。

> 更多

科展作品檢索

外來種尖翅翠蛺蝶的幼生期生物學及擴散模式探討

尖翅翠蛺蝶最早於2019年在基隆被發現,是以芒果葉為寄主的外來種蝴蝶。本研究透過野外調查發現,尖翅翠蛺蝶偏好在4.8公尺以上的芒果樹產卵,在都市化程度高的環境仍可繁殖。幼生期天數在47日至62日間,低溫會延長幼生期發育時間。生長速率隨齡期增加而變快,且雌蝶幼蟲體型較雄蝶大,蛹體長寬比也有差異。幼蟲會依據體型與體色變化進行不同的隱蔽行為,其體背白線與與中肋位置為隱蔽行為的關鍵因子。公民科學資料顯示本種入侵臺灣本島後呈現「 先跳躍後漸進」 的擴散模式,在本島東西兩側呈現不同擴散階段。考量各因子對擴散的影響, 推估本種會持續南向擴張至恆春半島,並轉至東側再往北擴散東部縣市,南部縣市可提早監測本種對芒果產業的影響狀況。

> 更多

科展作品檢索

方圓之間—魔錶3探秘

本研究找出魯比克鐘最少步數解法,發現立柱影響連動範圍、鐘面組合數和同步轉解法: 一、立柱具有唯一性:用於考慮鐘面重疊範圍時,2<=n<=8用鐘面集合的交、差集計算;以阿達瑪矩陣積得到全部鐘面連動範圍。 二、對稱性是決定影響唯一圖的關鍵,考慮「雙重對稱」特性,得到5種唯一立柱組合。 三、組合數與起始狀態數:無對稱軸時,鐘面有n個的組合,組合數為4n個,起始狀態數有4n-1。有1個對稱軸,對稱軸上有a個鐘,共有n個鐘的鐘面組合,組合數為(4n+2n+a)/2個,起始狀態數有(4n+2n+a)/2-1個。 四、鐘面同步轉在考慮立柱唯一性與鐘面對稱性,彼此獨立的鐘面僅有14個,同一指向0的最少步數一定是7步。

> 更多

科展作品檢索

「精」天能不能在「E」起! 四苯基乙烯單分子受環糊精包覆型式及其錯合物之聚集誘導放光性質研究

本研究聚焦於α−,β−,γ−環糊精對原始四苯基乙烯分子進行主客體錯合之聚集誘導放光現象研究,探討不同環糊精在水溶液中對四苯基乙烯之包覆效果進而觀察水溶液及固體狀態下之螢光性質變化,結合螢光顯微鏡、紫外可見光、螢光及核磁共振光譜技術量測與分子模擬方式來深入探討環糊精與四苯基乙烯之間錯合與放光關係。實驗結果顯示γ−環糊精對四苯基乙烯分子具有最佳的錯合包覆效果,兩者間透過 1:2比例方式為最可能模式,同時錯合物具有雙重激發放光性質 (分別放射藍光與綠光,激發波長分別為 330-380與450-490nm)。

> 更多

科展作品檢索

複合槲皮素奈米顆粒提升難溶性化合物之抗氧化能力

槲皮素(Quercetin)為天然黃酮類(多酚類),具有抗氧化、抗發炎、增强免疫力等功效。但因其水溶性很低,不易讓人體有效吸收,常需吃過量試劑,有浪費情形。本研究利用聚乙烯吡咯烷酮(PVP)、羥丙基-β-環糊精(HPBCD)與槲皮素進行複合,提供奈米製程化並增進其溶解度。在增加PVP K30比例下,複合試劑粒徑可從1200nm降至約30-40nm,形成奈米粒子。與原槲皮素抗氧力比較,複合試劑可提昇40-50倍以上。最後,複合試劑在發泡顆粒劑型可以在30秒內溶出90%以上的成份。以上實驗,說明本實驗能有效增加其溶解效能與奈米化,有效提升槲皮素從原先難溶、難吸收的情形,變為可讓人體快速吸收的粒形。

> 更多

科展作品檢索

人人可上手的Direct Air Capture

本研究尋找生活中捕捉CO2的方法,並以Direct Air Capture(DAC)方式探討影響CO2吸收效果的各項因素。在測量方式方面,利用導電度檢量線測量較穩定且轉換數值方便,優於空氣品質偵測器或pH檢量線;在影響CO2吸收效果的各項因素中,溶劑以氫氧化鈣效果優於單乙醇胺與醋酸鉀,且氫氧化鈣濃度越高、風速越大,吸收 CO2的效果越好,但周圍CO2的濃度大小則不影響吸收度;此外,為了探討生活中最佳的DAC捕捉方式,以使用清潔海綿 (或吸附體孔徑約250μm)浸泡高濃度氫氧化鈣溶液來製作DAC捕捉裝置,並放置於有風處,其效果最佳; 孔洞過大或過小,吸收效率都會下降;海綿的碳酸鈣回收率為73.27%。

> 更多