搜尋結果
查詢 共找到 14338筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

「解」不動了--當電解水遇到絆腳石

本研究探討在電解水過程中,添加非電解質(如蔗糖與甘油)對離子移動速率的影響。實驗以硫酸鈣粉筆為水溶液載體,搭配廣用指示劑觀察電極附近的顏色移動,分析離子的遷移行為。結果顯示,糖與甘油皆使離子遷移速率隨濃度上升而下降,原因包括溶液黏滯性提升、水合作用與分子的碰撞阻擋,使得離子移動速率變慢。 本研究並進一步比較甘油、葡萄糖與蔗糖三種非電解質的影響效果,結果顯示:儘管甘油溶液的電阻高於葡萄糖,但離子在甘油中移動速率更快,推測與甘油較小的分子結構、較弱的水合作用,以及特殊的潤滑性有關。此結果挑戰「電阻越大,離子移動越慢」的直覺印象。

> 更多

科展作品檢索

等角六邊形的秘密

任意等角六邊形𝐴𝐵𝐶𝐷𝐸𝐹之6邊的延長線,即會得到兩個正三角形Δ𝐼𝐽𝐾、Δ𝐼′𝐽′𝐾′,其中三組對邊以[(𝑎,𝑏,𝑐),(𝑎′,𝑏′,𝑐′)]表示,則三組對邊均相互平行,任兩相鄰邊長的和必等於其對邊長的和(𝑎+𝑏′=𝑎′+𝑏)(𝑏+𝑐′=𝑏′+𝑐)(𝑐+𝑎′=𝑐′+𝑎),則有以下成果: 1.若已知四邊長度,且其中三邊相鄰,即可決定唯一之等角六邊形。 2.三組對邊都相等或都不相等,才能決定一個等角六邊形。 3.兩組有相同公差的數列,各取連續三個正數為邊長,則可決定唯一的等角六邊形。 4.一組等差數列中,任取6個連續正數(𝑎1,𝑎2,𝑎3,𝑎4,𝑎5,𝑎6)為邊長,可形成兩個相異的等角 六邊形([(𝑎1,𝑎2,𝑎3),( 𝑎4,𝑎5,𝑎6)]、[(𝑎1,𝑎3,𝑎5),( 𝑎2,𝑎4,𝑎6)])。 5.當等角六邊形邊長為完全平方數時,可以求出一些特列。 6.討論等角六邊形的面積與用相同大小正三角內鑲崁的個數。

> 更多

科展作品檢索

光致變色螢光席夫鹼之合成及特性研究

合成亞胺化合物,抽充法容器除水除氧、分子篩乙醇除水及減壓蒸餾純化苯胺、克勞修斯方程估算蒸餾溫度。TLC偵測純度、計算Rf值並比較各結構極性。UV圖知SA於pH=6在383nm具吸收峰,酸化至pH=4則藍移至326nm,時間掃描測試證明SA酸鹼型結構轉變為瞬間快反應,計算定溫下K值,Van't Hoff圖求ΔH、ΔS,由ΔG負值證明SA酸化為自發反應。各結構λmax次序知芳香環對位助色團共軛延伸及化學反應性優於間位。聚集態時SA及SB2因抑制分子內旋轉螢光增強為AIE效應, SB1因π-π堆積為ACQ效應,各因素競合作用勝出者決定螢光強度,以X ray解晶結構確認內氫鍵的存在,導致SB1與SB2螢光發色相反的結果;合成錯合物Ca-L1及Zn-L1,不同pH下顯色具明顯差異並探討原因,以開發自製螢光pH試紙。

> 更多

科展作品檢索

一價銠金屬催化肉桂胺衍生物進行不對稱氫芳基化反應 Rhodium(I)-Catalyzed Asymmetric Hydroarylation of Cinnamylamine Derivatives

一價銠金屬催化反應已經被廣泛應用於有機化學合成領域中。而本研究以具保護基之肉桂胺衍生物1與四芳基硼鈉試劑2a作為起始物進行銠金屬不對稱氫芳基化催化反應,得到具有保護基的掌性2,3-雙芳基丙胺衍生物3,並探討此反應的掌性雙烯配基對於反應的影響。本研究已完成使用Ts(對甲苯磺醯基)保護基之肉桂胺衍生物1a作為起始物進行反應,並改變與銠金屬錯合的配基,發現當配基使用2,5號位為芳基取代之配基L(掌性雙環[2,2,1]雙烯配基)時,反應有較好的位置選擇性,其中最佳的是芳基取代為苯基之配基L1,其位置選擇性比例為1:0:0.09。目前將進行改變起始物1之氮上的保護基,以L1作為配基進行反應,並與1a比較,優化反應性及產率。

> 更多

科展作品檢索

Electrical Characterization of MoS2 Field-Effect Transistors at Cryogenic Temperatures

隨著矽基電晶體逐漸微縮,其元件效能將接近其物理極限,二硫化鉬 (MoS2) 等二維材料藉著其獨特的特性(如寬的能隙、高電流開關比及優異的載子遷移率等),可作爲矽的替代材料用於未來的電子科技應用。本研究旨在製造MoS₂ 的場效電晶體並研究元件之低溫特性。我們成功利用機械剝離法製備並轉移二維 MoS2薄膜至二氧化矽/矽基板上,並且製造MoS₂ 場效電晶體,並量測其室溫(300 K)至極低溫(~ 4 K)的電流特性,元件在此溫度範圍中具有優異的特性,能有效地調控電流調控,表現出良好的下閘極控制能力,同時具有低次臨界擺幅及高電流開關比(~ 106)。在極低的溫度(4 K)下,該電晶體仍能保持良好的運作,顯示出MoS₂應用於低功耗且高元件效能的低溫電子元件的潛力。

> 更多

科展作品檢索

麩醯胺酸誘導阿拉伯芥的受體表現

自然界中,植物以NO₃⁻和NH4+作為主要氮源,在吸收後轉化為麩胺酸(Glu)和麩醯胺酸(Gln)作為第一產物進行基本生理反應,在我們實驗室先前的研究中,發現Gln會誘導阿拉伯芥側根生長、壓力反應和抗病性,所以提出了一種假說「細胞外的Gln是營養氮源,也是一種“危險訊號”」,藉由可能存在的Gln的受體表現。目前我進行了其中三組受體的測試,分別是wall-associated kinase2(WAK2)、wall-associated kinase3(WAK3)和EF-Tu受體(EFR),WAK家族是穩定細胞壁果膠的受體激酶,然而我們實驗中發現WAK3在wak3 muntant的表現是不穩定的。EFR為接收EF-Tu(elongation factor thermal unstable)的模式辨識受體(PRR),參與活化植物防禦及PAMP-triggered immunity (PTI),efr muntant在Gln的誘導下表現了防禦相關基因與水楊酸生成之相關基因。本研究將有助於深入理解Gln在植物防禦和側根生長中的功能及其調控機制,並為未來的作物改良和病害防治提供理論基礎。

> 更多

科展作品檢索

漫畫生成與預測

本研究探討了利用生成式人工智慧技術為漫畫創作帶來新可能性。在當今競爭激烈的漫畫產業中,創作者們需要不斷創新以吸引觀眾,而創作引人入勝的漫畫需要豐富的想像力和劇情結構。本研究希望能協助創作者製作草稿,並探索與AI當朋友的新型創作模式。在生成方面,提出了將漫畫劇情提取、劇情預測以及圖片生成三個步驟的生成流程,並使用了多種模型和技術,如 YOLO模型用於漫畫人臉檢測、文字生成模型用於劇情預測、LoRA技術用於模型微調等,為解決人物生成不連續的問題,我們也提出一種基於特徵提取與融合的解決辦法。本研究提供了一個全面的方案,旨在利用人工智慧技術幫助漫畫創作者創作出簡單的草稿。

> 更多

科展作品檢索

開發影像辨識系統應用於離岸流偵測預警

離岸流是海灘安全的重大隱患,台灣有30處海岸經衛星拍攝到離岸流。其發生時間和地點不定,且會迅速將人帶離岸邊,最遠約100公尺。民眾常因掙扎而體力不支,導致溺斃。為減少此類事故,本研究開發了一套離岸流偵測預警系統,構建出準確度超過95%的辨識模型。 因台灣無離岸流圖庫,本研究除國外圖庫,也加入台灣GoOcean等平台的即時影像,以貼合台灣實際狀況。經影像前處理後,共約四萬張圖片和五十部影片用於訓練YOLO v8模型。當偵測到離岸流,即時透過Discord發送警報至救難中心。我們也加入人形辨識功能,若系統同時偵測到人與離岸流,則加強警戒等級,從而提升救援效率。 完成離岸流辨識系統後,我們著手開發預警功能。將辨識模型應用於各地監視器,蒐集更多離岸流資料,再先後使用YOLO v8和Transformer提取生成特徵,預測其發生,以達成預警的功能。

> 更多

科展作品檢索

探討CTEN影響NF-кB路徑與細胞遷移之關聯性

C-terminal tensin-like(CTEN)是種可調控細胞遷移的蛋白質。在正常細胞中, CTEN 表現量低且多位於細胞質;然而癌細胞的 CTEN 則是過量表現於細胞核中,且目前研究指明 CTEN可能影響NF-κB路徑的活化,因此本研究探討癌細胞核中 CTEN 對 NF-κB 訊息傳導路徑,以及細胞遷移癌化的機制。目前研究結果證實:表現量位於癌細胞核的實驗組對於NF-κB轉錄活性有顯著的提升(其p-value < 0.05),且與空白對照組比較,其提升細胞遷移的能力約增加11倍。實驗挑選六種與細胞發炎、癌化相關的基因 ,以qPCR 測定CTEN與其表現量的關係,歸納結果得知癌細胞核中 CTEN 與這些基因沒有明顯的正相關。本研究接續研究CTEN影響NF-κB路徑及其與EMT的關係,瞭解CTEN、基因在這些路徑的交叉作用,將可提供更為新穎的癌症治療干預靶點。

> 更多

科展作品檢索

懸掛液滴的光學成像性質與其組合應用探討

眾所周知,水滴是生活周遭容易取得且可以放大物的透鏡,藉由作品中的實驗裝置能夠方便的觀察液滴中的成像,且能夠隨意地改變取率半徑和折射率,並搭配手機方便觀察與紀錄結果。若欲知液滴中成像的放大率,可利用測得的曲率半徑帶入「造鏡者公式」得知水滴的焦距,得知焦距後,便可將其帶入「薄透鏡公式」即可得知放大率 (距離水滴的長度不同,有不同的放大率),再利用實驗驗證算出的焦距和放大率是否符合實際的焦距。之後改變液滴的曲率半徑和種類並比較其對放大率的影響 (本研究討論曲率半徑0.1公分和0.15公分的差距、水和食鹽水的折射率差距)。此外,更加以研究「球透鏡公式」與「薄透鏡公式」所算出的數據之差距與實驗觀察結果比較,並應用於複合透鏡中。

> 更多

科展作品檢索

正本「塑」源-探討河川塑膠微粒

基於對鄉土的關懷,我們選定高屏溪流域,來研究河川中塑膠微粒的尺寸大小和含量,透過光譜來了解塑膠微粒的材質。高屏溪流域是跨高雄及屏東地區最大的河流,我們共分為枯水期及豐水期來採水,比較不同季節之塑膠微粒類別,若以形狀區分:枯水期塑膠纖維最多,豐水期塑膠薄膜最多。若以尺寸區分:枯水期100~500μm的佔最多,豐水期25~100μm的佔最多。若以材質區分,枯水期含量最多分別是PE及PP,豐水期含量最多分別是PE及PET。若從顏色區分,大多是白色及透明為主要顏色。以上實驗結果可供主管機關列為重要監測參考,特別是國內少有研究單位或機構,在進行高屏溪流域塑膠微粒類別、含量之調查與研究,因此本研究重大發現為國內創舉深具意義,可供相關單位後續深究參考之價值性。

> 更多

科展作品檢索

Application of Carbon Aerogels in Lithium-Air Batteries

One of the main challenges with today’s batteries is their relatively low volumetric and specific capacities. The highest specific capacity can be achieved with lithium-air batteries, which use metallic lithium as the anode and typically some form of porous carbon as the cathode. To enhance performance, aerogels—among the world’s lightest solid materials—are ideal candidates for cathodes. Resorcinol-formaldehyde (RF)-based carbon aerogels, for example, serve this purpose well. In my work, I utilized two types of carbon aerogels as cathode materials: one derived from pyrolyzed resorcinol-formaldehyde polymer and the other a graphene-oxide-modified version of this carbon gel. I integrated the carbon aerogels I had pyrolyzed into lithium-air batteries to improve the cell’s performance, energy density, and capacity compared to cells using activated carbon. In my research, I examined the pore structure and surface properties of these materials in aqueous media using NMR (nuclear magnetic resonance) relaxometry and cryoporometry, exploring their impact on battery efficiency. I found that the graphene-oxide-containing sample's pores filled with water in a layered manner, indicating a more hydrophilic surface, which suggests a denser arrangement of oxygen-containing functional groups compared to the unmodified carbon aerogel. The pore sizes were reduced after adding graphene oxide, resulting in an increased specific surface area for the sample. Incorporating the reduced graphene-oxide-containing carbon aerogel enabled the creation of a more efficient, higher-capacity battery than with the RF carbon aerogel. This improved performance is likely due to the aerogel’s higher oxygen content and altered morphology. The increased oxygen content provides more active sites for oxygen reduction, meaning that a greater specific power output can be obtained from the battery.

> 更多