搜尋結果
查詢 共找到 14829筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

小圓點的百米賽跑-界面活性劑於水面之擴張探討

本實驗探討界面活性劑於水中的擴散情形,取各濃度界面活性劑溶液滴入水中,並紀錄漂於水面之塑膠圓片的運動再透過tracker軟體進行分析。由數據結果得知,界面活性劑於水面上的擴散速度與濃度無關,其擴散是以水面上一層薄膜的方式擴張,故擴散後中央區濃度幾乎不變且會不斷擴張直至整個表面,但擴張過程其邊緣仍會有短距離的濃度稀釋區域。漂浮物僅有極短的加速時間,乃因界面活性劑擴張速度快於漂浮物的移動,故在啟動後不久物體便被界面活性劑超越並進入中央濃度不變區而無法再加速。不同濃度對相同距離之漂浮物所造成的初期加速度、所達極速及到達極速所需時間差異不大,可推測各濃度擴散至相同遠近時其濃度梯度相近且梯度區域寬度亦相近。

> 更多

科展作品檢索

SeC輔助抗癌藥物對肝癌療效與其機制探討

本研究探討L-硒代胱氨酸(L-Selenocystine; SeC)是否能抑制肝癌細胞(HepG2)生長與毒性機制。以細胞存活率分析得知10 µM SeC可抑制HepG2細胞生長,但對正常肝臟細胞(L-02)無明顯毒性影響。以彗星試驗發現,同樣濃度SeC對HepG2具基因毒性,會造成DNA損傷。再以西方墨點法得知SeC會使HepG2的抗氧化酵素表現量減少。透過同源重組活性測試證實SeC會抑制HepG2的DNA修復。與單獨使用臨床常用抗癌藥物Cisplatin比較,混合10 µM SeC與較低劑量的10 µM Cisplatin對HepG2有更明顯的毒殺效果。 10 µM SeC預期可用於輔助臨床抗癌藥物的療效,其抗癌細胞機制至少有兩種: 一為降低抗氧化酵素表現量,導致活性氧化物質(ROS)累積,造成DNA損傷;二為降低DNA同源互換修補活性,最後造成細胞凋亡。

> 更多

科展作品檢索

變化球-球化時間對球墨鑄鐵球化率及機械性質探討

本實驗以碳當量約4.3%的鑄鐵液,經球化處理,於不同等待時間下進行澆鑄,探討球化後等待時間對球墨鑄鐵球化率、石墨分佈及強硬度等機械性質之影響。 實驗過程以固定成份材質於球化桶進行球化處理後,分別等待5、10、15分鐘澆鑄至預先完成的鑄模中,待凝固冷卻後取出鑄件,並於切割及加工處理後進行各項實驗探討。 從實驗結果得知,球化反應10分鐘內澆鑄試片其球化率、強度硬度可達最佳值。極限強度達55.18kg/㎜2,為未球化試片之極限強度12.97kg/㎜2的4倍以上,等待時間超過10分鐘後強度與硬度隨著球化率有下降趨勢。但伸長率及降伏值都有倍數成長,而對硬度僅有少量提升。

> 更多

科展作品檢索

願護天下銀齡俱歡顏-縮減數位落差提升社會福祉

新冠疫情期間因應確診者隔離政策,線上看診重要性大大提升,在需求量越來越多的情況下,許多問題也浮出檯面。經由資料蒐集、討論與訪談診所人員後,我們發現有很多高齡者因數位落差而不會操作線上看診,導致被排除於醫療網之外。因此決定將主題聚焦於如何改善高齡者的數位落差,讓他們學會線上看診的操作,確保看診權益。我們的解決方法以民眾較常接觸的地方診所為中心,思考診所的服務創新以及如何改善服務流程。後續再更深入探討縮減數位落差的方法,可結合地方志工以建立完善的社會支持系統,即整合流程方案,逐步降低高齡者的數位落差,提供另一個就醫管道,增進社會福址。

> 更多

科展作品檢索

boom!玉米定時炸彈-探討玉米粒爆開之因素

本研究發現玉米粒受熱爆開的時間分布圖形,不符合普松分布圖形,證明玉米粒爆開不是一個隨機事件。研究亦發現玉米粒爆開的時間,會受玉米粒內水分的多寡與加熱時油溫的影響。從玉米粒在加熱的過程中,尖端的小孔會冒出氣泡,我們建立了「玉米粒壓力鍋模型」、發現玉米粒冒出氣泡的速率改變,符合白努力定律。再將玉米粒內產生的水氣莫耳數減掉溢出的水氣莫耳數,配合理想氣體方程式,我們得到一公式,可以解釋玉米粒在加熱過程中的壓力變化。並從此公式可解釋為何玉米粒在水分多、高油溫、孔徑小的情形下容易爆開。最後我們將推論的物理模型做數值模擬,發現模擬結果與實驗所觀察的現象相符。

> 更多

科展作品檢索

不同吸附載體礦物對於白蝦飼養水質之影響

我們選擇了台東在地的礦物-絹雲母,與蝦農常使用來淨化水質的吸附素材,如:活性碳、麥飯石和沸石,藉由觀察白蝦養殖造成的汙染物質的變化來討論不同吸附材質的淨化水質能力。我們一開始採各3 g的不同吸附素材加入蝦池中,可以發現絹雲母可以以較低的價格達到和其他吸附素材相當的效果。第二階段我們另外添加了光合菌到蝦池當中,可以發現水質明顯穩定許多,我們推測光合菌與吸附素材搭配使用可能有更好的效果。絹雲母是台東在地開採礦物,不像活性碳等其他吸附素材如此昂貴,若研究成熟後能將絹雲母推廣於台東縣內的蝦農,或許能促進在地產業發展來互相合作以減少成本的負擔,可以以較低的成本達到淨化水質的目的。

> 更多

科展作品檢索

自動X光檢測重建2.5D圖形用於非破壞性檢測:印刷電路板之應用

為了解決自動光學檢測的非穿透性檢測物體方式,使用自動X光檢測能解決此問題,因此,本研究嘗試開發自動X光檢測技術,並藉由常見的印刷電路板作為應用。作為結果,本研究能進行X光模擬理想化印刷電路板,搭配實體X光取像,藉由平移堆疊法重建出2.5D印刷電路板影像,並藉由霍夫法圓形辨識圈選錫球,輸入卷積神經網路,辨識錫球焊點之優劣。

> 更多

科展作品檢索

適應地形之運輸裝置的行動機構與遠端控制研究

運輸裝置在不同結構設計下,獲以下結論: 一、重心位置影響:電池盒在前方速率穩定,平面折返走時,電池盒前上最快;上下坡折返走,在前下最快。 二、最佳機型:曲柄位置為右下,固定桿9cm、前腿4cm、曲軸6cm、連桿13cm的配置最佳。 三、腳底設計對運輸裝置上下坡:以全止滑比較快,平面腳底比較快,能使運輸裝置走得最快。 四、曲軸長度:運輸裝置之前腳曲軸越長,前腿移動圈圈越大,而後腳移動的步伐越長。 五、後腿支點:運輸裝置後腿位置越高,後腳移動路徑越長。 六、爬坡角度:最佳機型的運輸裝置,能順利地爬上20度的坡度。 七、運輸裝置在不同障礙物下:間距為2.5公分時,速率最快;障礙物高度越高,速率越慢;人工步道之石頭高度>1.5公分時速度變慢。

> 更多

科展作品檢索

步步高昇~爬樓梯機器人的終極奧義

我們嘗試要設計一個能夠爬樓梯的機器人,在有一項比賽時,看到了有些人前腳像輪子一樣快速地爬上去。因此,我們這組就想要研究~怎樣讓我們的機器人爬得更快。研究結果發現: 一、前腳長度>樓梯的踢面高度高約1.5公分~3.5公分,機器人能順利爬樓梯。 二、前腳越長扭力小,前腳越短,扭力大。 三、前腳加寬轉軸為5公分,爬樓梯速率變快。 四、以桌球皮黏在抓夾上,爬樓梯速度最快。 五、同樣的齒輪比,前腳越長扭力越大,前腳越短,扭力愈小。 六、底座變寬,能減少機器人翻倒次數。 七、當踢面高度變為原來2倍時,爬樓梯速率降為為原1/2。 八、自行研發低重心機型爬樓梯速率最快,原先比賽齒輪盒改良機型速率最慢。 九、獲致爬樓梯機器人最佳結構。

> 更多

科展作品檢索

沉沒的寶藏

本研究從浮沉子這項玩具出發,藉由了解控制浮沉子升降的因素,探討如何製作浮沉子以使其可更省力操作。我們發現藉由增加浮沉子負重,可更容易控制其浮沉。 此外,我們根據波以耳定律改良浮沉子,設計出簡單但有效的壓力計,可測量寶特瓶內壓力。 以設計的壓力計測量寶特瓶耐壓程度,測試過的寶特瓶中,最高在壓力達8個大氣壓力左右時仍未破裂。 施予寶特瓶相同外力時,不同品牌寶特瓶內產生之壓力亦不同。根據本研究的分析推論是:某些寶特瓶可能因其特殊設計而較能將受壓處外力分散到周圍的瓶壁,因此可讓受力面積增大而減小瓶內壓力,這種寶特瓶在遭受局部劇烈撞擊時,可能可承受較大外力。

> 更多

科展作品檢索

以大腸直腸癌預測為例進行缺失值處理方式的探討與實驗

機器學習和精準醫療是目前醫學界的熱門話題。機器學習在醫療領域的應用越來越普及,可幫助臨床更快速及精準診斷疾病,並提供個人化治療方案。例如,通過訓練大量醫學影像數據,建立深度學習模型,可用於腫瘤的自動辨識與分類。通過醫療資料大數據分析,可以為臨床提供及時的疾病預測和預防建議。然而,如何讓臨床資料結合機器學習建立模型預測,是很重要的議題。本研究使用臺北醫學大學數據處蒐集衛生福利部雙和醫院的大腸直腸癌與大腸炎病患三年的臨床資料,結合機器學習進行模型的建立與預測。經處理數據的缺失值、特徵的排序與選取及向前特徵選取法來訓練與驗證模型,找出分辨大腸直腸癌和大腸炎的最佳檢驗項目組合及效能,以預測大腸直腸癌。

> 更多

科展作品檢索

壓電-摩擦感測器配合CNN進行步態分析及身分識別

我們設計了一款透過壓電片與摩擦片收集資料的智慧鞋,壓電片嵌入在鞋底,摩擦片安裝在前腳掌,兩者並聯。當人行走時,感測器會被擠壓變形,藉由DAQ(數據採集)收集感測器的電壓輸出,可顯示出正常步行、快走、慢跑和漫步等活動的訊息,利用時變電壓形式的輸出數據,與能夠識別時域信號的CNN深度學習(卷積神經網絡)進行不同類型步態辨識。 實驗結果顯示此方法可以辨檢測這四種步態,其辨識率高達95%。訓練好的CNN可同時辨識個人身份與步態。結果顯示,識別快走時辨識率極高,識別正常步行和漫步時辨識率為90%,識別慢跑時辨識率僅達49%。因此,我們未來預計將提高同時辨識不同受試者與不同步態之辨識率,並透過壓電能量擷取器為藍牙模組供電。

> 更多