隱密的發育調節中樞-植物轉錄因子BPC對發育之調控機制 A cryptic hub for development control: Unraveling the regulatory role of plant transcription factor class I BASIC PENTACYSTEINEs in Arabidopsis development
GAGA 序列為生物發育重要順式作用子; BPC (BASIC PENTACYSTEINE) 則為植物特有 GAGA 結合蛋白。已知 bpc 突變體具多效性,其生理時鐘相關之發育有多重缺陷。阿拉伯芥BPC家族中 BPC1, BPC2, BPC3 為第一亞群,且 BPC 群間和群內有重疊與拮抗作用。為探究第一群 BPC 是否調控生理時鐘,本實驗以 3D 影像觀察 bpc1 bpc2、bpc1 bpc2 bpc3 及野生型之晝夜運動,並誘導 BPC 過量表現以檢測時鐘基因反應,發現 bpc 突變體之晝夜運動與時鐘節律皆有缺陷,顯示 BPC 能影響生理時鐘運行。透過一系列對第一群 BPC 突變體與過量表現植株的 RT-qPCR 檢測,可歸結第一群 BPC 是能調控生理時鐘與葉片生長的中心。
EVALUATION OF THE SURFACE TENSIO, LARVICIDAL AND ANTIBACTERIAL ACTIVITY OF PLANT EXTRACTS FROM THE LEAF OF THE ARACA TO COMBAT THE PROLIFERATION OF THE Aedes aegypti MOSQUITO IN STILL WATER CONTAINERS
The Aedes aegypti mosquito is one of the main transmitters of viral diseases in countries close to the equator. This vector promotes a series of generalized endemics that are difficult to control and prevent in these regions. Furthermore, the presence of bacteria in the environment favors the proliferation of mosquito larvae, which increases the probability of Aedes aegypti reproductive success. The Araçzeiro (Psidium guineense Sw.) is a plant present throughout the Brazilian Atlantic Forest and has in its composition, especially in the leaves, several substances that can be used to solve problems. Thus, we sought to verify the activity of flavonoids and polyphenols in terms of their antibacterial potential and the performance of saponins in their larvicidal potential, as well as surfactant, in order to prevent the accommodation of the mosquito in the water at the time of egg deposition and larvae respiration. The saponins were extracted from the araçazeiro leaf using a hydroalcoholic solvent and the flavonoids/polyphenols using methanol, the latter being subsequently rotaevaporated to maintain the non-toxic nature of the extract. Through the aqueous extracts, the content of total saponins by UV-VIS spectrophotometry, surfactant activity, larvicidal activity and toxicity were determined. In relation to the ethanolic extracts, the content of polyphenols and total flavonoids by UV-VIS spectrophotometry and high performance liquid chromatography (HPLC), antibacterial activity and toxicity were determined. The results showed that the aqueous extract has a satisfactory amount of saponins, as well as a surfactant potential due to the formation of foam and larvicidal activity in the two highest concentrations of the extracts. Ethanol extracts showed phenolic acids, especially gallic and ellagic acid, and flavonoids, especially catechin and quercetin, and antibacterial activity in most of the worked concentrations. Both extracts (aqueous and ethanolic) showed a dominant nontoxic character, which favors their use without risk to the environment, having an alternative and sustainable potential for controlling the proliferation of the Aedes aegypti mosquito.