2006年

化學中的數學與程式設計

When we were learning about organic compounds at school ,there was a unit discussing the isomers of alkane .Our teacher made us practice drawing all the structural formula of the isomers from hexane to nonane .We were much interested in the subject .However ,we often missed or duplicated some isomers .Thus , we began to think if it is possible to find a way by developing programs to let the computer calculate the exact number of the isomers of alkane . After discussion ,we set up a complete coding system .We numbered the isomers in the way that computers could decode and then wrote them in C language. Through computer execution ,the numbers of the isomers from C1 to C20 all match those on the reference website. According to the same concept , we also find a way to calculate the number of alkane with one substituted group . In the future,our goal will be focused on the research of multi- substituted alkane and cyclokane. In addition , the ionic crystal accumulation model are so variable. Take the double face-centered accumulation of NaCl for example, when the ion pairs are extended to the infinity , the potential energy of attractive field will approach a constant which is named as the Madelung Constant. We also managed to write a computer program with C language to approach this convergence with three models, including cube , octahedron , and sphere . The result turned out to be that the data of the sphere was less stable . In the other two models , when “n” is up to 43 layers , the data is identical with that on the reference website to the eight decimal point . 在學校裡學習有機化合物有關烷類異構物這個單元,老師讓我們練習畫出己烷~壬烷的所有異構物結構式,這引起我們極大的興趣!但常一不小心就漏掉或多出幾個,我們開始思考:能不能找到一個方法並設計成程式,讓電腦執行以找出烷類異構物?經過討論,我們建立了一套完整的編碼系統,將各異構物以電腦可解讀的方式編號,並以C 語言寫成程式。透過電腦執行,各碳數化合物自C1至C20都與參考網站吻合。依相同觀念,我們也設計出烷類含一個取代基的異構物數目。將來努力的目標為:多取代基及環烷類之研究!另外,離子晶體堆積模型變化多端,以NaCl 雙面心堆積為例,其引力場位能,當離子對延伸至無限大時,這個值將趨近於一個常數,又稱為馬德隆常數。我們嘗試以C 語言設計電腦程式,用三種模型(正立方體、正八面體、圓球)來逼近並求得這個收斂值。執行結果是:圓球數據較不穩定;而另二種模型到n=43 層以上,其數值大小與參考網路上的數值,在小數點以下8 位完全相同。

氣流式薄膜測厚儀

醫學上的植皮手術成功率受皮膚厚度影響,皮膚愈薄癒合速度愈快,其中以取皮厚度介於0.05mm 到0.1mm 為佳。在實驗量測時,需要經過一連串繁複的薄皮標本製作,再放到光學顯微鏡下測量,這種厚度測量方式不但耗時,又因嚴重損毀皮膚而不精確。由於使用螺旋測微器做接觸式測量會有形變的問題,因此我們想做間接接觸式的測量,所以採用氣體為媒介,做非破壞性檢測膜厚,這對於在皮膚上的施力遠小於螺旋測微器或是接觸式膜厚計。我們設計一套三頭連管線,使用空氣為媒介,儀器運作原理為在管線一端針頭非常靠近被測物時,所流出的氣體會受到被測物阻礙產生反壓使管線內的壓力上升,導致連通於另一管路的氣泡指示計壓出氣泡,當氣泡為最大氣泡時(半球形)視為達到平衡狀態。實驗時先用已知厚度且不變形的蓋玻片來當作被測物,此時可以算出針尖至蓋玻片的實際距離做為參考值。在量測軟性薄膜時,設計上採用兩側雙針頭靠近軟性被測薄膜兩側以達到氣流氣泡平衡,這時使用螺旋測微器讀取兩針尖距離,減去已知參考值的兩倍距離,即可測出未形變的軟物質厚度。本研究開發一套能測量軟性薄膜的厚度裝置,尤其在皮膚厚度測定上,不但不會直接接觸標本造成損毀,並且能夠快速地測量出厚度值,此為本儀器的最大特色。The thickness of skin graft has deterministic influences on the success of graft surgery. Experimental measurements of skin graft thickness involve complicated specimen preparation processes followed by optical microscopic examination, which are time-consuming and may incur inaccuracy due to possible damage. Here we propose a novel method using air as the media to avoid direct contact of the measured object. The physical operation relies on the following principles: When the tip of a needle connecting to a catheter system is placed close to the object to be measured, the air pumped forward from the catheter system becomes impeded by the object. The resulting backflow pressure opposing the air flow causes an increase in air pressure within the catheter and inflates the bubble connected at the other end. Balance at maximal surface tension is attained when the bubble reaches its maximum volume in hemispherical shape. In practice, a two-needle design was used, each approaching simultaneously from each side of the object. A micrometer was then used to read the distance between the two needle tips, from which the film thickness was derived, subtracting the thickness of the air layer pre-calibrated using cover glass with known thickness. The system implemented was capable of measuring thickness on soft thin films with an accuracy of ± 0.001mm. In addition to rapid measurements with high accuracy, since the pressure exerted on the skin graft is much less than in conventional calipers requiring direct contact, our method has the unique non-distorted and non-destructive advantages.

基因突變對線蟲(Caenorhabditis elegans)的神經系統退化突變株的搜尋以及對其

This research is mainly in observation with Caenorhabditis elegans ’s genetic mutation caused via nervous system abnormal character. In the study, I the sample have been cultivated purified and add some chemical material EMS to speed up C.elegans mutation. Then based on the character to further analysis what causeof gene deal with mutation and observe the effects in heredity. The research has two stages, on the first stage of study the mainly target is to both search and purify the mutation of C.elegans. The second stage is based on the exploration of mutation’s searching and purifying. Because the certain mutation bodies aren’t easy to find out, the project is still on progress at the beginning of second stage, and we conclude some heredity special cases in preliminary of study. 這個實驗主要是觀察並針對線蟲因為基因的突變所產生的神經系統異常的變異性狀,在實驗中我先將樣品線蟲培養並純化至一定數量,並加入適當藥劑EMS造成其突變,經篩選並分析此性狀,進而找出造成其突變之基因,以及觀察此性狀對遺傳表現所造成的影響。該計畫分成兩階段,第一階段的實驗重點是在突變株的搜尋以及純化上,第二階段則是在突變基因的探討上,由於特定突變株的搜尋並非容易,所以目前計畫只進展至第二階段的遺傳實驗初期,對於其遺傳特徵與突變形式上已有了初步的分析,但尚未定位出該基因的位置。

利用浮沈子測量液體表面張力並演示"Cheerios Cheerios effect"

密閉容器置入待測液,放入浮沉子,施加壓力,當浮沉子恰要沒入液中瞬間,因表面張力的總力達極大值且向上,外加壓力(p1)為極大值,浮沉子沒入液中;液面減壓,當浮沉子在液面正下方時,外加壓力 p2,量 p1、(p1- p2),浮沉子的質量 m,外半徑 R,及玻璃管的體積 G V ,可求得液體表面張力。 液面再減壓,浮沉子恰要露出液面時,表面張力的總力達極大值且向下,外加壓力(p3)為極小值,量 p3、(p2- p3),浮沈子的質量 m,外半徑 R及 G V ,應亦可求得表面張力;但實驗時浮沉子漂移到容器邊,並吸附在器壁上,因此發現浮沉子的”Cheerios effect”。 利用浮沉子和容器的相吸及相斥現象,可解釋西式早餐的小榖片放入牛奶中為何會漂移到碗緣,並支持 Vella在 2005 年 9 月份美國物理期刊(AJP)認為 Cheerios effect的成因除了由於接觸角不同外,浮力、重力、表面張力共同作用,使小榖片間有相吸、相斥現象。 The experiment apparatus is equipped with a Cartesian diver by using a glass tube with air trapped inside that floats or submerses in a closed vessel containing liquid. The external pressure may be varied with a syringe and measured with a water manometer. The maximum pressure P1 inside the vessel is measured when the diver is just about to sink, where the surface tension that acts on the diver is upward. Then the pressure P2 of the vessel is measured when the diver is just beneath the liquid surface, where no surface tension acts on the diver. Finally, the surface tension is calculated from P1, P2 and the radius of the diver, R. When the pressure inside the vessel is decreased, the diver will rise. As the diver is about to emerge from the liquid, we get the minimum pressure P3 inside the vessel, and the surface tension that acts on the diver is downward. By measuring P3, P2, and R, the magnitude of surface tension is found to be the same as above. When the diver is just about to sink into the liquid, it floats to the center of the vessel. When the diver is about to emerge from the liquid, it sticks to the wall of the vessel. This phenomenon is named the “Cheerios effect.” Our results again strongly support that the cause of the effect is due to the different contact angles between the diver and water, as well as the balance of gravity and surface tension in the case of the sinking diver, and the balance of buoyancy and surface tension in the case of rising diver as Vella claimed in his paper (AJP 73, 817 (2005)).

我的味噌湯-微小顆粒在液體中沈澱模式之觀察研究

The purpose of the research is to investigate the settling mode of the viscid micro-particle, such as the ones from the “Miso Soup”, in static liquid. We constructed the “constant temperature environment” by constant temperature trough and transparent glass trough. The data is gathered from pictures captured from DV and then analyzed by Media Player. We did a stability test prior to the start of the experiment and found the system with good stability. The results of the experiment are as followed: 1. The settling mode can be divided into four phases: (a) Initial accelerated phase (b) Maximum phase (c) Gradually decelerated phase (d) Stationary phase. 2. The lower the fluid concentration is in the fixed temperature: a. the faster its settling interfaces appears; and the deeper it becomes for the depth of its settling interface. b. the faster the maximum sedimentation rates of the settling interface becomes and the slower it appears. 3. At the fixed concentration, the higher temperature: a. has the bigger maximum sedimentation rates of the settling interface b. gets to the stationary phase sooner c. has shallower stationary settling interfaces d. the time when the settling interface appears is independent with the temperature 4. The shape of the container has no effect on the settling mode as the settling interface is always perpendicular to gravity field. 5. If we add salt into the liquid, the stationary settling interfaces of the result will be higher than non-added ones.本研究的目的在於探討味噌這樣的微小黏性顆粒,在靜止液體中的沈澱模式。運用恆溫槽與透明玻璃水槽所建構之恆溫環境透過數位攝影機,以電腦播放軟體於特定時間擷取畫面進行分析。在正式實驗前,進行了穩定性試驗,發現穩定性良好。實驗的結果發現:一、 沈降模式:可以分為四個時期,分別為(一)起始加速期(二)高峰期(三)逐漸穩定期(四)完全靜止期。二、 在固定溫度下,溶液濃度越低:(一) 出現沈降交界面的時間越短且穩定距離距液面越深。(二) 沈降面沈降速率最大值越大且出現的越晚。三、 在固定濃度下,溶液溫度越高:(一) 沈降面沈降速率最大值越大。(二) 沈降交界面完全靜止期出現的時間越短,也就是越快達到穩定。(三) 沈降交界面的穩定距離距液面越淺。(四) 沈降面沈降速率最大值出現的時間與溶液的溫度無關。四、 容器內部的形狀與沈降面的沈降行為並沒有影響,都是成與重力場垂直的水平線沈降。五、 添加食鹽之後最終穩定沈降面比同濃度同溫度的高了許多。表示添加了食鹽對於味噌溶液有阻止沈澱的效果。

旋光性介質對電磁波影響的分析與討論

This experiment mainly aims at three kinds of solution - Dextrose, Saccharose, and Fructose. By changing its temperature, density, length of tube, as well as different wave length factor of polarized light, we observe the influence of the direction of polarization by those factors. The experimental result showed as follow. The Dextrose and the Saccharose can cause the polarized light with the rotary direction of clockwise, so both are ‘dextrorotatory’. The Fructose can cause the polarized light with the direction of counterclockwise, so it is the ‘laevorotatory’. For the Dextrose, when the\r temperature is lower than 20℃, the direction of polarization has changed observably, but doesn’t have any rule. When the temperature is higher than 20℃, the direction of polarization increase slowly. For those three kinds of solution, when\r density increased, the polarization increased observably. When the polarized light passed through the solution with longer path, the direction of polarization has more change. When the wave length of the polarized light changed, the direction of polarization has been changed observably. When the wave length of the polarized light is shorter, the direction of polarization change increased.本實驗主要針對葡萄糖、蔗糖、及果糖等三種旋光性溶液,改變其溫度、濃度、容器管長、以及不同波長的偏振光等因子,觀察這些因素對偏振方向所造成的影響。實驗結果顯示:葡萄糖與蔗糖會使得偏振光的偏振方向以順時針旋轉,屬右旋性之光學異構物;果糖會使得偏振光的偏振方向以逆時針旋轉,屬左旋性之光學異構物。若溶液為葡萄糖,當溫度低於20℃時,偏振光的偏振方向會有明顯的改變,但無規則可尋;當溫度大於20℃時,偏振方向旋轉角位移則以非常緩慢的方式增加。當此三種溶液之濃度增加時,偏振光的偏振方向有明顯遞增的現象。此外,當容器長度越長(即偏振光在介質中的行程越長)時,偏振方向的改變亦越明顯。當偏振光的波長改變時,偏振光的偏振方向有明顯的變化,且當偏振光的波長越短,偏振方向的改變越大,似乎與波長呈反比,但此結果與理論值(即旋光度與波長平方成反比)仍有一些差距。

耍「薛骰」-Sicherman Dice 的探討

George Sicherman discovered that it is possible to take a couple of 6-sided dice re-labeling them with different positive integers (1,2,2,3,3,4) and (1,3,4,5,6,8) having the same probability distribution as rolling a standard pair of 6-sided dice. Such unique pair of dice is calling Sicherman dice. The secret behind the Sicherman dice can be studied by combining the powerful mathematical tool “Generating functions” with the symbolic manipulation software “Derive 6”, The same procedure may be applied to studying the possibility of the generalized Sicherman dice along the consideration of :\r (1) Adding more dice. (2) Changing the number of faces. To this end, we introduce the concept of the Sicherman Bound. For a given integer n, the number of n-sided Sicherman dice is finite. We computed manually such numbers for n?50 based on the method of “Elimination of negative terms”. Sicherman Dice 就是一對點數配置與正常骰子(6 面正立方體,點數為1到6)不同的骰子,它所拋擲出的每一種不同點數和(2,3,4...,12) 的機率恰好與一對正常的骰子相同。這種骰子是美國的Col. George Sicherman 所發現的。 Sicherman 更進一步指出:在不使用Sicherman Dice 的情形下,不可能找到一組大於或等於三顆的非正常骰子,它們拋擲出的每一種不同點數和的機率恰好與一組同數量的正常骰子相同。本研究的目標在於1. 尋求計算「Sicherman Dice 的組合和正常的骰子有相同的出現機率」的方法2. 證明Sicherman 結論的真偽及是否適用於其他正多面體(4 面/ 8 面/12 面/ 20面) 的標準骰子3. 修正Sicherman 的結論,並定義Sicherman 極限(Sicherman Limit)。在假設n面正多面體(n 為自然數, n ? 50 )存在的情形下,探討每一個正多面體的Sicherman 極限4. Sicherman Dice (Crazy Dice) 的延伸探討(1) 不同面數骰子的組合,是否可以找到面數組合相同,但點數配置不同的Crazy Dice( 如4 面與6 面的標準骰子組合,找到4 面與6 面的Crazy Dice)(2) 多個面數相同或不同骰子的組合,是否可以找到面數、個數及點數配置皆不同的Crazy Dice ( 如3 個4 面標準骰子組合, 找到2 個8 面的Crazy Dice)在研究的過程中,我發現以下的現象:(1) Sicherman Dice 的產生,是生成函數因式重新組合的結果(2) Sicherman Dice 是否存在,則視上述重新組合的結果是否有負項產生由於上述的觀察,我使用自行發展的「負項消去」法來檢驗Sicherman 結論的正確性及求得n 面正多面體其對應的Sicherman 極限。同時我也和Col. George Sicherman 取得聯繫, 討論當年他發現Sicherman Dice 的經過及其結論的限制條件,作為本研究未來發展的參考。

線鋁之情-以陽極氧化鋁模板製作氧化亞銅奈米線

我們使用陽極氧化鋁(AAO)模板來製備銅及其氧化物的奈米線。以硫酸銅和乳酸配製電鍍液,利用氫氧化鈉水溶液(NaOH)將其pH 值調整到12,供以不同電壓,可電鍍出銅及氧化亞銅奈米線。在較高電壓下可製備出銅奈米線,而在較低電壓下可製成氧化亞銅奈米線,若使用中間電壓則能製得銅及氧化亞銅的混合態。利用x 光繞射分析儀(XRD)來分析其結晶構造、使用場發射掃描式電子顯微鏡(SEM)以得知其表面形貌。電鍍出的奈米線直徑約60 nm。奈米線的長度可藉由調整電鍍時間或電壓來控制。在製作IC 內部導線方面,銅奈米線深具開發潛能;在提升太陽能電池的轉換效率、製作可見光光觸媒方面,氧化亞銅奈米線極具前瞻性。We electrodeposited copper and cuprous oxide (Cu2O) nanowires with anodic aluminum oxide (AAO) templates. Both Cu and Cu2O nanowires could be prepared with an alkaline cupric lactate solution, which was adjusted to pH 12 using a 6 M NaOH, when supplied with different electrolytic voltages. Cu nanowires could be prepared when a higher voltage was supplied, and Cu2O nanowires could be prepared with a lower voltage. A mixture of Cu and Cu2O nanowires could be prepared with a supply of a voltage in between. X-ray diffraction (XRD) is used to determine the phase composition, and scanning electron microscopy (SEM) is employed to characterize the morphology of the nanowires. The length of nanowires can be controlled by adjusting the time spent on electrodeposition and the voltage supplied. The resultant diameter of the nanowires was about 60 nm. Cu nanowires are promising materials for making the conductive wires in IC, and Cu2O nanowires hold great promise for improving the conversion efficiency of solar cells and manufacturing visible-light photocatalyst.

鉤盲蛇(Ramphotyphlops braminus)捕獵四部曲

Feeding behavior is the action which animals depend on maintain livelihood. Snakes usually use the three following ways to catch their preys: winding, venom-releasing and pressing their game to death. However, previews study is rare about the feeding behavior of Ramphotyphlops braminus. This puzzles us, prompting us to do in-depth research on it. When performing an experiment, we will use the camera with infrared function to record entire experiment and the obtained data will transform the graph. Our result shows the feeding behavior of R.braminus is a new way to catch their game, and the minute process of this special way is also written down in our report. We hope that the result can let everyone be clear about Ramphotyphlops braminus of soil ecosystem status, and it is an essential contribution for building the archive of Family Typhlopidae. 攝食行為是動物賴以維生的行為。在蛇類中,常見的捕捉方式有:纏繞、 使用毒液、壓斃等三種類型。但,文獻中卻沒有任何有關於鉤盲蛇(Ramphotyphlops braminus)的捕食行為。這使我們感到疑惑,並想深入探討。在實驗進行當中,我們使用紅外線攝影機將實驗全程錄製下來,並將所得的數據轉化成圖表。而其結果顯示鉤盲蛇(Ramphotyphlops braminus)的捕食行為是一種全新的模式,這種模式的詳細過程也被我們全部收錄到報告中。我們希望做出來的結果能讓大家對鉤盲蛇(Ramphotyphlops braminus)在土壤生態系中的地位更加了解,而且對於建立盲蛇科(Typhlopidae)資料庫有實質的貢獻。

單汽缸二行程高轉速引擎扭力延伸

The paper is to research the method how to prevent the torque down under the higher rotation of the single cylinder with two stroke’s engine and increasing the engine’s torque oppositely. By the process of adjusting (1)changing the weight and the position of the balance block(2) adjusting the exhausting time of the outlet valve(3)to decrease the weight and structure of the crank itself adequately. it is find that the engine’s torque was increased at the situation of higher rotational engine. After the adjusting of the process we have the following result:(1)at the higher revolution zone of the engine. the torque can be maintained and increased(2)the higher revolute efficiently value can be obtained by the correct adjusting of the exhaust time of the outlet valve without increasing the fuel.本研究主要是探討單汽缸二行程高轉速引擎在高轉速時扭力能延遲下降,使扭力增加。我們是利用二行程引擎高效率的結構和現有空間來提升引擎效能。經(1)改變曲軸配重塊之重量及位子移動 (2)調整引擎排氣時間 (3)適度減輕曲軸重量及結構等三項,改良後證明,確定能使扭力提升,和延伸到較高的轉速區。經過調整程序,可獲下列重要結果:(1)在引擎高轉速時,可增加較大的扭力值 (2)藉由適當的排氣時間調整,在不增加燃油供給條件下,可獲得較高的迴轉效率。