大自然的奧妙~土壤自我淨化能力
大氣圈、水圈與土壤圈是構成自然環境的三大領域,三者之間相互的影響,原本這些空間都具有極大的包容力,亦所謂「自淨能力」,許多的物質進入其中皆會被氧化分解或稀釋而消失於無形。近年來由於工業發展、人口增加,產生大量的廢棄物,長期、密集且迅速的堆積於環境中,使得天然的自淨能力無法應付而失去功能,造成嚴重的後果。就土壤而言,雖有較佳的自淨能力,但是一受污染,除了嚴重破壞土壤品質之外,同時也會直接或間接污染水源 (如:地下水)及空氣,對動植物造成危害,並且難以回復,實不容忽視。本實驗探討:一、土壤淨化能力是否受到不同地區、不同土壤性質的影響。二、同樣的土壤,對不同的污染物(色素、肥料、重金屬)淨化能力強弱的影響。實驗結果顯示大肚山土壤過濾溶液中的色素、磷、及重金屬中的鉻、鎳、銅的能力較中寮及大甲土壤強,只有氮與鉀的過濾能力較大甲土壤差,所以這次實驗中大肚山土壤有最好的污染淨化能力。實驗結果將來也許可以應用於土壤處理場址之適宜性評估。The air, water and soil are three parts of the nature. They affect each other. In fact, they have the "self-purity ability" - they can disassemble many polluted thing by this kind of self-purity ability. These years, because the industry development and the population explosion make lots of waste, the self-purity ability cannot do its best. The soil has better self-purity ability, but if it is polluted, it will not only pollute the water (ex: underground water) and the air, but also damage the animals and plants. We cannot ignore the serious result. This experiment will discuss:1. If the soil self-purity ability is affected by different area and different soil specificity? 2. The different purified results according to the different pollutant (ex: color, fertilizer and heavy metal) in the same soil. Results showed that Da-Du-San soil had strong ability then Chung-Liao and Da-Cha soil in filtrated color, phosphor, chromium, nickel and copper in the solution, but had weak ability then Da-Cha soil in filtrated nitrogen and potassium. Therefore, Da-Du-San soil had the beast pollution-purity ability in this experiment. In the future, results may be applied to the suitability evoluation of the soil treatment place.
快速檢定抗生素對細菌生物膜敏感性之新技術
The purpose of this study is to set up a quick, easy and economical way to evaluate the ability of different concentration of various antibiotics to penetrate biofilm and establish the antimicrobial susceptibility patterns of various antibiotics. The susceptibility of five antibiotics upon sessile cultures of Bacillus subtlis ATCC 6633, Escherichia coli XL, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 29213 and Sarcina lutea ATCC 9341 were measured ATCC 27853, and S. aureus ATCC 29213 proved to be very difficult to eradicate, with only Gentamicin proving to effective at achievable drug concentrations, but the S. lutea ATCC 9341 biofilm was the most susceptible to the Penicillin. The results demonstrated that for biofilms of the same organisms, several hundred to thousand times the concentration of a certain antibiotic were often required for the antibiotic to be effect, while other antibiotics were found to be effective at the MICs. The concentration of antibiotic to penetrate the biofilm is proportional to the thickness of biofilm. Indeed, our research have already indicated that the use of MIC values to indicate antibiotics effectiveness is misleading, because MIC values can not represent the actual effect of anticbiotics on microbiologicals that have developed biofilm. The antimicrobial susceptibility patterns of antibiotics to various bacterial biofilm are different. The susceptibility of the mixed biofilm depends on the physical and biological change of biofilm. Our biofilm device offers a new technology for the rational evaluation of antibiotics effective against microbial biofilms and for the screening of new effective antibiotic drugs.此研究之目的是要建立一套操作簡便、快速且費用低廉之生物膜厚度產生方法,藉此探討不同生物膜厚度對抗生素抗菌之影響,進而完成抗生素對生物模之抗菌圖譜。本實驗將測試五種抗生素Bacillus subtilis ATCC6633,Escherichia coli XL,Pseudomonas aeruginosa ATCC27853,Staphylococcus aureus ATCC29213和Sarcina lutea ATCC9341之抗菌圖譜。試驗結果顯示Gentamicin對前四株試菌有較佳之穿透力,對S.lutea ATCC 9341則是Penicillin。實驗結果證明最小抑制濃度值確實無法實際有效地表達對已形成生物膜菌體之抗菌效果,要完全去除生物膜之抗生素濃度是為最小抑制濃度之數百倍到數千倍,而且抗生素用藥濃度隨著生物膜厚度增加而成比例增加。不同抗生素對不同菌株生物膜有不同之抗菌圖譜,混合菌株生物膜是否會促進或抑制抗生素之穿透力,端視其生物膜結構有無改變。本實驗方法可以做為一種快速檢定抗生素對細菌生物膜敏感性之新技術,同時亦可有效地篩選新的抗生素藥物對生物膜的抗菌效應。
自由基VS抗氧化物
自由基會產生在神經系統、免疫系統、血液循環系統等等,進而影響到人體各器官的運作,甚至於近年來許多醫生學者提出自由基病理:自由基是百病之源。本次實驗筆者挑選葡萄子、維生素C、綠茶來抑制清氧自由基(OH.)所採用的方法是將10%雙氧水製入注射筒並加亞鐵離子催化,,使其與抗氧化物反應,由於雙氧水分解會產生氫氣自由基與氧氣,因此筆者用倍率放大器(OPA)放大生成氧氣造成的電壓,並用Data Studio測量記錄,最後可由氧氣體積對電壓的趨勢圖看出抑制氫氣自由基的效果;Free radicals will be produced in our nerves system blood circulation immunization system etc. and they able to influene the operaion for our organs many medical scholars have even come up with "free radical pathology"-free radicals are sourse of all he diseases in recent years.In this study, I chose rape stone vitaminC and green tea to restrain hydroxide radicals(OH.) Here is summary of the experimental process. First,I put 10%hydrogen peroxide into an injector and then added ferrous ion to hydrogen peroxide to catalyze it. Second I let it reaact with the sample. Because hydrogen peroxide can produce hydroxide radicals and oxygen, I used the mutiplier(OPA) to amplify the pressure caused with the prducion of oxygen, measuring and recording resuls by the software"Data Studio"Finally, we can tell which antioxidant is more effective in restraining hydrode radicals from volume-voltage gragh.
三個新的鋅的幾何異構物
在本實驗中,我們合成了三個新的鋅的幾何異構物:trans-facial-[Zn(dipica)₂]Cl2.CH3OH(dipica=dipicolylamine,C12H13N3,雙(2吡啶甲基)胺)trans-facial-[Zn(dien)2]Cl2(dien=diethylenetriamine,C4H14N3,二乙基三胺)及反式-[Zn(demn)2Cl2](demn=N,N’-dimethylethylenediamineC4H12N2,N,N'-二甲基乙二胺)。本實驗的特色皆在室溫下反應,採用擴散法培養晶體。trans-facial-[Zn(dipica)22]Cl2.CH3OH晶體為三斜晶系,晶格常數a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ=67.753(1)。;其空間群為P1,可信度R=0.025,Rw=0.0697。六配位的陽離子,其結構為扭曲八面體,兩個含氮三牙基(dipica)trans-facial配位,赤道面(ZnN(1)N(2)N(1A)N(2A))由兩個含吡啶環之氮(N(1)、N(1A))及兩個飽和胺之氮(N(2)、N(2A))所組成。主軸為兩個吡啶環之氮所組成。兩個含氮三牙基(dipica)與鋅的咬合角皆為84.5。。trans-facial-[Zn(dien)2]Cl2晶體為單斜晶系,晶格常數為a=11.3050(3)Å,b=10.9264(3)Å, c=12.6147(3)Å,β=92.884(1)。;其空間群為P21/c,可信度R=0.0191,Rw=0.0484。六配位的離子,其結構為扭曲八面體,兩個含氮三牙基(dien)與鋅的咬合角為156°、157°。反式-[Zn(dmen)2Cl2]晶體為單斜晶系,晶格常數 a=10.3397(4)Å,b=8.5916(4)Å,c=7.9774(3)Å,β=100.520(1)°;其空間群為C2/m,可信度R=0.0266,Rw=0.0686。其結構為八面體,鋅原子四個氮原子組成赤道面(ZnN(1)N(1A)N(1B)N(1C)),兩個氯原子位於此平面的兩側。兩個含氮雙牙基(dmen)與鋅的咬合角皆為83.0(1)Å。
In this study, we have synthesized three new geometrical isomers of zinc(II)complexes: trans-facial-bis(dipicolylamine)zinc(II)chloride-mathanol(1/2)(trans-fac-[Zn(dipica)2]Cl2.2CH3OH), trans-facial-bis(ethylenetriamine)zinc(II)chloride(trans-fac[Zn(dien)2]Cl2)and trans-bis(N, N'-dimethylethylenetriamine)zinc(II)chloride(trans-[Zn(dmen)2]Cl2). The crystals suitable for X-ray diffraction were obtained by slow diffusion of ether to solution of the products. There molecular strctures determined by X-ray diffraction. The complex trans-fac-[Zn(dipica)2]Cl2.2CH3OH crystallizes in the triclinic space group P 1 with a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ= 67.753(1)。, for Z=1. The R value is 0.0259 for 3286 significant reflections. In the hexacoordinate cation, the two tridentate dipicolylamine ligands are trans-facially coordinated with two pyridine nitrogens and two secondary amine nitrogens situated on four positions in a basal plane(ZnN(1)N(2)N(1A)N(2A)). The remaining two pyridine nitrogens constitute the axis in a distorted octahedra structure. Colorless trans-fac-[Zn(dien)2]Cl2 crystallizes the monoclinic space group P21/c with a=11.3050(3)Å, b=10.9264(3)Å, c =12.6147(3)Å,β=92.884(1)。,and Z=1. The R value is 0.0191 for 3285 significant reflections. The zinc(II) atom has distorted octahedra coordination, in which the ligands are bound in a trans-facial configuration. Colorless trans-[Zn(dmen)2Cl2] crystallizes the monoclinic space group C2/m with a=10.3397(4)Å, b= 8.5916(4)Å, c=7.9774(3)Å,β=100.520(1)。, and Z=2. The R value is 0.0266 for 856 significant reflections. The zinc(II)atom of trans-[Zn(dmen)2Cl2]is six coordinate with 4 nitrogens of bidentate dmen forming a basal plane(ZnN(1)N(1B)N(1A)N(1C)),and two chlorines on the axial sites completing an octahedra structure.
移動棋子問題的致勝策略
We consider a game played with chips on a strip of squares. The squares are labeled, left to right, with 1, 2, 3, . . ., and there are k chips initially placed on distinct squares. Two players take turns to move one of these chips to the next empty square to its left. In this project, we study four different games according to the following \r rules: Game A: the player who places a chip on square 1 wins;Game B: the player who places a chip on square 1 loses;Game C: the player who finishes up with chips on 12 . . . k wins;Game D: the player who finishes up with chips on 12 . . . k loses. After studying the cases k = 3, 4,5 and 6 for Game A and the relation among these four games, we are led to discover the winning strategy of each game for any positive integer k. The strategies of Games A, B and C are closely related through a forward or backward shifting in position. We also found that such strategies are similar to the type of Nim game that awards the player taking the last chip. Game D is totally different from the rest. To solve this game, we investigate the Nim game that declares the player taking the last chips loser. Amazingly, the strategies of two Nim games can be concisely linked by two equations. Through these two Nim games, we not only find the winning strategy of Game D but also the precise relation between Game D and all others.\r 去年我研究一個遊戲:有一列n個的方格中,從左至右依序編號為1,2,3,....n。在X1個、第X2個、第X3個格子中各放置一個棋子。甲乙二個人按照下列規則輪流移動棋子:\r 一、甲乙兩個人每次只能動一個棋子(三個棋子中任選一個)。遊戲開始由甲先移動動棋子。二、甲乙兩個人每次移動某一個棋子時,只能將這個棋子移至左邊最近的空格(若前面連續有P個棋時可以跳過前面的P個棋子而且只能跳一次),而且每個方格中最多只能放一個棋子。\r 研究這個遊戲問題時,我討論四種不同"輸贏結果"的規定:甲乙兩個人中,A誰先將三個棋子中任意一個棋子移到第一個方格,誰就是贏家。B誰先將三個棋子中任意一個棋子移到第一個方格,誰就是輸家。C誰先不能再移動任何棋子,誰就是輸家。D誰先不能再移動任何棋子,誰就是贏家。\r 當"輸贏結果"的規定採用ABCD時─我們稱為遊戲ABCD。今年我將把這個遊戲問題中棋子的個數由三個推廣到一般K個情形之後,再繼續研究遊戲的致勝策略,同時也將研究遊戲ABCD之間的關係。
馬纓丹? 變!變!變!
Lantana is a very common plant in our lives. It grows easily and it has a long florescence and various colors. The colors of particular types of lantana alter as the changing florescence. In this experiment, paper chromatography, high-performance liquid chromatography, SDS-gel electrophoresis, the measurement of petal cellular pH values, and the comparative study of forms of trachoma on the epidermal cells of petals are exerted in order to explore factors that change the colors of the lantanaThe findings are as follows:\r (1)Lantana’s colors have inseparable relationships with the compositions of anthocyanins and flavonoids, but not with the pH values of petal cells.(2)The anthocyanins of petal cells are cyanidm, with glycosides as well.(3)Beside the differences in the compositions of pigments, the forms of trachoma on the epidermis of the petal, cone-like or caniniform, can also be used to distinguish different types of lantana, because the trachoma can influence the reflections of light from the epidermis of the petals and also affect colors of the flowers.(4)The result of SDS-gel electrophoresis shows that the biochemical pathways of petal cells in all species of lantana are similar, so we assume that there is mutant in the series of synthesizing enzyme when the anthocyanins of petal cells are formed, and thus, there are no anthocyanins appearing in the yellow and white species of lantanaThe results above are helpful for the understanding and discovering of lantana’s biological mechanisms, and can be used to create new types of lantana and to make further study of the metabolism of lantana’s complete anthocyanin’s biochemical pathway馬纓丹(Lantana ssp.)是常見景觀植物,容易栽種、花期長、花色多,且有些品系花色會隨著花期而變化。本實驗利用濾紙色層分析、高效能液相層析、SDS-gel電泳、細胞pH值測定及花瓣表皮細胞之毛茸(trichoma)型態之比較等方法探討馬纓丹花色之不同及變化的原因。結果顯示: (1)馬纓丹的花色及花色變化與花青素(anthocyanins)和類黃素(flavonoids)之組成有密切關係,而與花瓣細胞內pH值無關。(2)花瓣中所含花青素為矢車菊色素(cyanidm),並且具有配醣基(glycoside)。(3)花瓣表皮細胞之毛茸型態,如圓錐形或犬牙型,會影響光的反射,進而影響花色,所以毛茸型態可做為區分馬櫻丹品系之特徵。(4)SDS-gel電泳的結果顯示,馬櫻丹各品系的花瓣細胞生合成類似,推測花瓣細胞產生花青素的一系列酵素中,已有突變發生,而造成黃色、白色品系無花青素。以上結果有助於了解馬纓丹花色變化之機制,可將其應用於改良出新的馬櫻丹之品系,或更深入研究馬櫻丹花青素完整生成代謝路徑。
重金屬錯影響細胞生理功能的研究
儘管鍺在電子工業上被廣泛運用,但對於暴露在鍺化合物所產生的毒害則尚未被詳細的探討。在探討鍺對細胞所產生的生理影響中,我們使用了二氧化鍺 ( GeO2)和有機鍺( Ge-132 )。由實驗結果顯示, GeO2,會造成人類子宮上皮癌細胞( A 431 ) 及巨噬細胞株( Raw264.7 )死亡,而 Ge -132 對細胞生長則不造成任何影響,為了進一步了解鍺引起細胞死亡是否是經過細胞凋亡(apoptosis ) ,我們將鍺處理過的細胞進行染色體 D NA 的分析,結果發現細胞中 DNA 染色體沒有斷裂。由先前 Huang 等人於 1999 年的研究結果顯示,砷對細胞所造成的毒性是經由有絲分裂活化酵素( MAPK )傳導路徑,所以為了解鍺誘導細胞死亡的路徑,我們亦分析 MAPK 傳導路徑是否亦參與其中,我們發現 GeO2加入 A431 細胞後,會活化有絲分裂活化酵素中的 ERK ,但對JNK 及 p38 皆無影響,在對蛋白質表現方面,轉錄因子 c-Jun 的蛋白質表現也是隨著GeO2加入的時間增加而上升。 GeO2加入 Raw 264 . 7cell 後,會造成 JNK 、 ERK 的活化,同樣的轉錄因子 c- Jun 也會增加,由此一結果得知鍺對細胞的影響會因細胞的不同而有所差異,為了分析自由基是否參與砷及鍺所造成細胞死亡的過程,我們分析在 A431 細胞中可產生的 NO 的可誘導性 nitric oxide synthase ( iNOS )的表現,我們發現氧化鍺及砷都會誘導 iNOS 的表現量增加。綜合以上結果,可能顯示氧化錯可能會經由 M A PK 訊息傳遞路徑來促使細胞的死亡,並且 iNOS 亦可能參與此過程。就我們所知,這是第一個提出重金屬所造成的毒害可能會經由 iNOS 來誘導產生的研究。
Despite the extensive use of germanium (Ge) in the electronic industry and optical devices, the potential risks of exposure to germanium compounds have not been evaluated. The effects of germanium on cell physiological functions were studied. We first asked if germanium oxide (GeO2) or carboxyethylgermanium (Ge-l32) could affect cell viability. We found that GeO2, but not Ge-l32, reduced cell viability in a dose-dependent manner in epidermoid carcinoma A43 I and macrophage Raw 264.7 cells. In order to test whether apoptosis contributes to germanium cytotoxicity, DNA fragmentation was evaluated in A43 1 and Raw 264.7 cells treated with GeO2 or Ge-132, respectively. We found that neither GeO2 nor Ge- 132 had effect on chromosomal DNA fragmentation. Previous studies by Huang (1999) et al indicated that sodium arsenite (NaAsO2) cytotoxicity is mediated through mitogen-activated protein kinase (MAPK) pathways. In order to study the mechanism(s) by which GeO2 mediates cell death, we analyzed the signal transduction pathways triggered by GeO2 We found that GeO2 stimulated the extracellular signal-regulated kinase (ERK) activity and transcription factor c-Jun in a time-dependent manner, but not c-Jun amino-terminal kinasc (JNK), or p38 MAPK in A431 cells. Treatment of the Raw 264.7 cells with GeO2, induced activities of ERK, JNK and c-Jun in a time-dependent manner. Collectively, these results suggested that GeO2 effects might be cell type specific. To test whether free radicals were involved in NaAsO2 or GeO2 mediated cell death, the expression of inducible nitric oxide synthase (iNOS), which produced the NO free radical, was determined in A431 cells treated with NaAsO2 or GeO2. We found that expression of iNOS was induced in a time-dependent manner in NaAsO2 or GeO2-treted A431 cells. Taken together, our results indicated that GeO2-induccd cell death may be mediated through MAPK signal pathways and that iNOS may contribute to NaAsO2 or GeO2 mediated cell death. To our knowledge, this is the first report that iNOS may contribute to heavy metal mediated cytotoxicity.