Promoting Metal Adhesion to Electrospun Fibers and olymer Thin Films with Gold Nanoparticles and Sup
As electronics continue to shrink in size, the cost and environmental impact of current methods of production are increasing dramatically. The purpose of this experiment was to lay the groundwork in another potential method of creating nanowires and printed circuit boards. We believe that through the exposure of supercritical CO2, metalized electrospun fibers with gold nanoparticles will have increased conductivity. In addition, the adhesion of metal to polymer thin films can be controlled with a poly (ethylene oxide) (PEO) mask on both silicon and Kapton substrates. This study found that a specific concentration of gold nanoparticles can make a solution of poly (methyl methacrylate) (PMMA) in chloroform that cannot be electrospun, spinnable. Scanning electron microscopy also confirmed that scCO2 smoothes the surface of the fibers and makes them more uniform. EDX analysis also found that exposure to scCO2 also removed all residues of solvent and cross.sectional transmission electron microscopy showed that the nanoparticles were conglomerated near the surface. In conclusion, scCO2 and gold nanoparticles respectively enhanced the morphology of the fibers and made the electrospinning process more robust. Cross.sectional analysis also showed that the nanoparticles attracted the deposited gold into the fiber making prongs reach from the deposition into the fiber, but there was no test to quantify the adbesion. Using the spray bottle test, the gold still remained on wires. The resistivity of the micro wires was extremely close to that of gold creating resistances within hundreds of ohms over hundreds of micrometers of wires. Thin Films masked with PEO were exposed to scCO2 and metalized with gold or copper. Atomic force microscopy analysis shows unique crystallization formations of poly (capro lactone) (PCL) after scCO2 exposure. ASTM standard peel tests determined that the process was successful with PCL thin films. On the Kapton samples, peeling patterns reversed when the thickness became too great to melt in scCO2.+ Through perfecting these processes, the electronics industry can continue in its miniaturization while the environmental and monetary costs.
探討聲致發光效應中,改變溫度,濃度,液體種類,頻率對氣泡發光的影響?
聲致發光效應(sonoluminesence)為最近二十年來相當新穎的研究領域,其基本原理是利用超聲波將水中的氣泡集中,並使之隨著超聲波快速且連續的膨脹壓縮,當氣泡被壓縮至最小時溫度急遽上升,並放出藍白色的光芒。正因為這是一個嶄新的領域,所以許多實驗是以嘗試錯誤的方法去進行,但也因此發現了一些特殊的現象:1. 氣泡在正常的頻率(30kHz)以外,經過一段不可發光的頻率後,還可在更高頻率(接近40kHz)的地方發光2. 氣泡發光效率曲線在不同性質溶液中的差異3. 針對高頻率發光及雙泡發光的部分,做了兩個相關的假設並進一步驗證,得到了相當特別的結論。至今已有許多關於此研究的成果發表,但對於同時兩顆氣泡存在並發光的雙泡發光現象(double-bubble sonoluminesence)卻還很少人研究。因此我們嘗試較系統化地分析雙泡發光,期望能夠對這個現象有進一步的認識,並對日後的多泡發光(muti-bubble sonoluninesence)研究奠定基礎。Sonoluminescence has been a very popular topic for the past twenty years. Single-bubble sonoluminescence occurs when an acoustically trapped and periodically driven gas bubble collapses so strongly that the energy focusing on collapse leads to light emission. Because it is a new topic, few related experiments on this issue have been carried out before. However, while doing the research and making adjustments at the same time we discovered some special phenomenon: 1. Besides the normal amplitude frequency (30kHz) added on the bubble, we found that after a period of frequency which can not emit, the bubble is able to remain and emit in higher amplitude frequency (about 40 kHz). 2. We also compared the emission efficiency when bubbles are in different liquids. 3. To explain part of the results in high frequency and double-bubble sonoluminescence, we made two assumptions and attempted to demonstrated them in the end of the report. Some research studies in this field have been released already; nevertheless, few people concentrate on “double-bubble sonoluminescence.” Therefore, we attempt to systematically analyze the emission of double-bubble, expecting to have more comprehension of this marvelous effect and also establish the fundamental background to “muti-bubble sonoluninescence.”
見微知「駐」-水珠律動與圓駐波
It is always fascinating to see water droplet’s dancing around on a Japanese teppanyaki hotplate surface. The water usually does not evaporate immediately, but form interesting shapes, dance around and follow by evaporation of gaseous water and disappear. In this experiment, we designed a very simple experimental set-up to observe the little water droplets dancing on a heated hotplate. A homemade stainless plate and a small heater attached to the plate, and a thermal couple was assembled. With this simple setup, we observed the variation of water droplet’s shape as a function of the hotplate temperatures. The temperature of the water droplets, the duration of the water on the hotplate, and the shape number were measured. The shape formation mechanism was proposed. We found when the water droplet was subject to high heat due to the contact of the surface and the hotplate, the abrupt evaporation of the water molecules and violent vibration cause the formation of the various shapes to reach thermal equilibrium; the number of the shapes and the oscillation can be described by Laplace’s equation,Using a high-speed camera, we found the higher the temperature of the water, the more variations of the water droplet shapes can be observed. In addition, at a certain temperature range, the number of the water shapes did not change, suggesting a similar phase transformation behavior on the shape formation.
緣起: 邂逅專題研究、水珠漫舞、剪輯影片,引起我們想更進一步揭開它的神秘面紗。
緣續: 了解熱平台上水滴大小的變化及水珠基本的形狀及變化律動。
緣繫: 進一步研究水珠多變的面貌,並探討水珠的大小、溫度、停滯時間及變化規律相關機制。
緣定: 糾纏在水珠圓舞曲中有如大珠小珠落玉盤的曼妙,其中埋藏了平均圓與能量量子化的律動。
狂舞飛圈-簡單飛機的飛行動力研究
本實驗主要是探究雙圈圈簡單飛機的飛行原理,歸納圈圈結構對飛行距離、升力的影響,以及氣流流經機體時發生的作用。研究結果如下:一、實際發射,歸納影響滑行距離的變因。1. 前後圈直徑比值約為0.8 時滑行距離為最大。2. 前後圈寬度比值越接近1 時,滑行距離越遠,但影響不大。3. 圈圈間隔在21cm 時,滑行距離最大。二、設置風洞,模擬飛機飛行,測量升力1. 圈圈寬度越大,升力越大。2. 升力最大值出現在圈圈仰角25 度左右,風速越快,升力越大。3. 鋁片仰角在20°時升力最大,升力與角度的關係式為 F = 5×10?7θ4 + 4×10?5θ3 ? 0.0083θ2 + 0.2615θ + 0.13744. 風速越快,升力越大,在仰角20°時升力與風速的關係大約為F = 0.4579V2 - 0.9231V +1.4772 。5. 鋁片面寬每增加1cm,升力也增加0.1513gw。前後長每增加1cm,升力即增加0.1263gw。三、設置蒸汽氣流,觀察簡單飛機的氣流場1. 蒸汽流通過圈圈時,會發生附壁現象,而且簡單飛機使氣流往下偏折,飛機得到升力。四、理論演繹︰1. 以康達效應的理論推算出升力,與實際測量得的升力約相等,驗證升力確實由康達理論造成。2. 墊高簡單飛機前圈,使得軸線提高,確實影響了飛行距離,墊高1cm 以內,飛行距離均增加了,以實際的改進證實升力確實是康達效應。This experiment mainly discusses the flying principle of the simple plane which is made up of a straw with two paper circles, one bigger than the other, stuck on both two ends of it. We first launched the simple plane actually and concluded the factors which influenced the sliding distance of the plane, including the distance between two circles, diameter and width of the two circles. Second, we set up a simple wind-tunnel and simulated the flight, in order to measure the strength of lift. Third, we set up the steam air flow and observed the change of the air current in the steam flow while flowing through the plane. The Phenomenon of Wall Enclosing happened and made the flows downward, and the plane gained the lift at the same time. Finally, we deduced that there are two sources of lift and Benoulli's law is not suitable for it. The Coanda Effect can be applied to figure out 54 percent of lift. And the current, blocked by the plane, also offers some lift. In order to prove that the Coanda Effect does effect, we padded the first circle to enlarge the angle of elevation of the axis of the two circles. It really affected the sliding distance of the plane. While the first circle is padded up within 1 cm, the sliding distance of the plane increases. Practical improvement proves that Coanda Effect accounts for the lift.
Discovery of new bioactivities of violacein and its erivatives synthesized by Chromobacterium sp.
目的:紫色桿菌(Chromobacterium sp.)是一種生活在土壤及水域環境的革蘭氏陰性菌,它會產生紫黑色的紫色桿菌素(Violacein),因而使菌體與培養液皆呈紫色。Violacein是一種由兩個L-色胺酸(L-tryptophan)分子所聚合成的五環化合物,已被證實具有抗菌以及抑制腫瘤細胞生長的活性。本實驗的目的在探討紫色桿菌是否會利用不同官能基的L-色胺酸,合成不同的Violacein衍生物,並分析這些Violacein衍生物的生物活性。方法:將紫色桿菌培養於液態LB培養基中,分別加入不同濃度的L-tryptophan、1-CH3-L-tryptophan與5-OH-L-tryptophan,於室溫下培養48小時,再用乙酸乙酯萃取Violacein及其衍生物,將萃取出來的紫色桿菌素,用紫外光/可見光分光光譜計和質譜儀進行分析。最後,再將這些萃取物打入斑馬魚受精卵做胚胎毒性測試,並進行試管外DNA剪切能力分析。結果:加入不同官能基的L-色胺酸所合成的產物都是紫色,且在紫外光/可見光的光譜中的最大吸收波長皆相同,質譜儀分析結果則顯示,L-tryptophan 、與5-OH-L-tryptophan的產物圖譜不同、而1-CH3-L-tryptophan的產物則無法分析。斑馬魚胚胎毒性測試結果顯示,Violaecein和1-CH3-Violacein 不會對胚胎發育造成影響,但是5-OH-Violacein則會造成胚胎發育異常。DNA 剪切能力測試也顯示,只有5-OH-Violacein具有剪切DNA的能力,其他則否。重要性:本實驗成功地利用紫色桿菌合成Violacein及其衍生物,並發現了5-OH-Violacein比Violacein 具有更高的生物活性。;Aims: Chromobacterium sp. is a Gram negative bacterium which inhabit in soil and water environments. Chromobacterium produce a purple color compound named Violacein. This colorful compound makes Chromobacterium and its culture mediumin purple color. Violacein is a five rings compound synthesized from two L-tryptophan molecules. Studies have shown that Violacein has anti-bacteria and anti-tumor activities. The purpose of this study is to investigate whether Violacein can be synthesized from different tryptophan analogues, and whether these Violacein derivatives have different bioactivities. Materials and Methods: Chromobacterium sp. was cultured in liquid medium containing different concentrations of L-tryptophan, 1-CH3-L-tryptophan, and 5-OH-L-tryptophan. After 48 hours incubation at room temperature, Violacein and its derivatives were extracted by EA, analyzed by UV/visible spectrophotometer and MS. Violacein and its derivatives were also tested for their embryo toxicity and DNA cleavage activity in vitro. Results: The compounds synthesized from different tryptophan analogues were all purple and have the same maxima absorption wave length in the UV/visible spectra. However, MS spectra of compounds synthesized from L-tryptophan and 5-OH-L-tryptophan were different. The results of zebrafish embryo toxicity tests indicated that violaecin and 1-CH3-Violacein had no effect on embryo development, but 5-OH-Violacein caused development defects. DNA cleavage tests also showed that only 5-OH-Violacein could digest DNA in vitro. Violaecin and 1-CH3-Violacein could not digest DNA. Significances: Results from this study indicate that Chromobacterium sp. can be used to synthesize Violacein derivatives from different tryptophan analogues, and revealed that 5-OH-Violacein is a higher bioactivity compound than violaecein.
奈米複合材料與空氣分子的愛恨情仇-探討奈米碳管對空氣滲透率之影響
本實驗使用聚醚亞醯胺溶液製備基本薄膜,由於玻璃態高分子薄膜過於緻密,一直是高分子薄膜在應用上的一大限制,為了在薄膜上製造缺陷,又不會使薄膜之選擇性降低,因此選擇將酸化之奈米碳管(孔徑10~20nm) 加至聚醚亞醯胺薄膜中。本實驗主要為探討添加不同濃度的酸化奈米碳管對聚醚亞醯胺薄膜的滲透率與選擇率的影響,藉由添加0.5 wt%、1 wt%、1.5 wt%、3 wt%、4 wt%等不同濃度的酸化奈米碳管至15 wt% 的聚醚亞醯胺溶液中,並製作薄膜,測試其基本性質與五種氣體(H2、CO2、O2、N2、CH4)的滲透率及不同空氣分子之間的選擇率。我們總共測試了三種薄膜的性質,分別是表面特性、熱穩定性及結晶型與層間距,薄膜的表面性質,能觀察到奈米碳管在薄膜中製造奈米孔隙結構,增加氣體滲透的孔道,能有效增加氣體的滲透率。增加奈米碳管的量,能有效升高第一階段熱裂解的溫度,雖然熱裂解在本實驗中沒有很大的差異,但是還是可以從熱重分析圖中推測不同量的奈米碳管會影響熱穩定性。在X 光繞射實驗中,添加奈米碳管的薄膜與純聚醚亞醯胺薄膜,在結晶相上都屬非結晶型薄膜,添加了奈米碳管的高分子複合薄膜的層間距明顯增大。在氣體滲透實驗中,我們比較了不同氣體或濃度不同的奈米複合薄膜的氣體滲透率,在不同氣體時,氣體的滲透率會隨著奈米碳管濃度增加有明顯的提升,五種氣體滲透率大致依照H2>CO2>O2>N2>CH4 這個趨勢增減。奈米碳管對1.5%增加到3%或4%的奈米複合薄膜滲透率的影響卻減小,由此可以推斷奈米碳管對空氣滲透率並非無限制的增加,在1.5%以後就漸漸趨近最大值。H2為14.89barrer,CO2 為9.51barrer,O2為6.34barrer,N2為6.48barrer, CH4 為3.75barrer 。本研究總共比較了三組氣體的選擇率,分別是CO2/CH4,O2/N2,H2/CH4,分離率最高的是H2/CH4 的,兩分子的粒徑大小差對分離率有極大影響,差愈大,其分離率也愈高。奈米碳管的量改變並不會使薄膜的氣體選擇率明顯增加或減少,但是加入太多奈米碳管其選擇率會變低。在五片薄膜中,1.5%的薄膜有最好的選擇率,奈米碳管的添加量超過1.5%選擇率就會開始下降。綜合滲透率及選擇率可以分析出,添加1.5%奈米碳管的高分子奈米複合薄膜有較高的滲透率,又不會降低選擇率,在利用上比其他濃度的奈米複合薄膜在有害氣體過濾及空氣的分離回收方面產生更好的效果。;This experiment uses Polyetherimide polymers solution to make basic membranes. Because glassy polymer membranes are too dense for gas permeations, it is one of the limitations in their applications. To increase gas permeability and maintain air selectivity, I made some nanogaps on the surface of the membranes by an acidification multi-wall carbon nanotubes (MWNTs, kinetic diameter 10~20nm) in the PEI membranes. We mainly want to find if it has some influence between the consistency of acidification MWNTs and gas permeability or selectivity. We mixed 0.5wt% 、1wt%、1.5wt%、3wt%、4wt% acidification Carbon nanotube in 15wt% PEI solution, made membranes and tested the character, five kinds of gas permeability (H2、CO2、O2、N2、CH4) and the selectivity between different gases. We have tested the three nature of membranes, including surface characteristic, TGA and XRD. We can see some nanogapes made by carbon nanotube in the membranes. It could availably increase gas permeability. Mixing more carbon nanotube in the membranes could increase the temperature of the first heat-decomposition. Though the heat-decomposition in this experiment didn’t change a lot, we could say that different percent nanotube would affect the membranes’ heat-decomposition. By the experiment of XRD, the membranes with carbon nanotube and the pure PEI membranes attach to amorphous membranes. Nanocomposite’s de-spacing is bigger than pure membranes. In the experiment of air permeability, we compared different kinds of gas or different percent carbon nanotube of nanocomposite if they have some change of permeability. The conclusion is that air permeability increase as the quantity of nanotube increase. The five kinds of permeability the direction:H2>CO2>O2>N2>CH4.The influence of permeability will decrease when the quantity of carbon nanotube increase from 1.5% to 3% or 4%. We can get the conclusion that the increment of gas permeability isn’t limitary. It drifts towards maximal about 1.5%. H2 is 14.89barrer. CO2 is 9.51barrer. O2 is 6.34barrer. N2 is 6.48barrer. CH4 is 3.75 barrer.This experiment totally compared three groups of air selectivity. They ’re CO2/CH4, O2/N2 and H2/CH4. The maximum of selectivity is H2/CH4. The difference of kinetic diameter affects air selectivity a lot. The quantity of nanotube doesn’t associate with the air selectivity, but mixing too much nanotube will decrease air selectivity. The 1.5% nanocomposite has the highest selectivity. If the consistency of the membranes is higher than 1.5%, the air selectivity will decrease. Depend on the gas permeability and the air selectivity, the 1.5% nanocomposite has higher permeability and constant air selectivity. That shows the 1.5% nanocomposite has a better effect on air selectivity and recycling.
千金難買「蚤」知道
我們的研究重心是設計簡便的裝置來檢測生活周邊的用水 · 利用生物對於環境污染的生理特徵、活動力、忍受極限 … 等變化,作觀察、實驗之後,將紀錄結果分析、做成表格,進而形成明確、簡易的指標,以供給一般人更容易的了解用水的品質。本實驗不必使用昂貴的儀器來檢測河水與用水,成本低廉的水生生物為本實驗的最佳選擇 · 可於任何地點完成,作為大及化的檢測方法,本實驗參考水樣急性檢測方法一水蚤靜水式,以水蚤在不同眾屬離子、酸鹼值溶液中的實驗結果,用以做為分析水質的標準,佐證我們生活圈附近的水質現況。Our point of study is design the simple and convenient device to measure the water with peripheral life. Utilize the living beings to the physiological characteristic , energy of the environmental pollution, stand limit. Wait for and change, after making observation , experiment. noting down the result will be analysed , make into the form , and then form the clear , simple and easy index , in order to supply common people with the quality of easier understanding water. This experiment needn’t use the expensive instrument to measure river and water . the best choice of the experiment that the cost is based on living beings cheap aquatically. Can finish in any place , as the popular detection method. This experiment consults the acute detection method of water sample — Water flea’s quiet ability of swimming. with the experimental result in different metal and ion sour soda value solution of water flea, use the standard taking making as water quality of analysis, prove the present situation of water quality of adjacent place of our life range.
野外實測嗜酸性溫泉紅藻光合作用能力之特性
台灣溫泉資源豐富,不同的溫泉泉質適合不同的溫泉藻類生長。溫泉藻屬於極端生物,其應用資源極待研究開發。本研究根據細胞型態、藻膽蛋白種類分析以及rbcL 基因定序等結果推測北投溫泉藻屬於一種溫泉紅藻,其種類近似於Galdieria sp. (Rhodophyta)。此外,本研究利用葉綠素螢光分析儀於野外實測北投溫泉紅藻於不同光強度下,光合作用能力的差異,發現適應於不同光強度的溫泉紅藻,其電子傳遞速率並無顯著的差異。推測其原因可能與北投溫泉紅藻的phycocyanin 含量會隨著光量有所調整,藉此達到最佳的光合作用能力有關。另外,本研究發現隨著光強度的上升,溫泉藻的NPQ 值有上升的趨勢,然而低光區的溫泉藻有較高的NPQ 值,此與一般理論不符。利用HPLC 分析北投溫泉紅藻的類胡蘿蔔素種類組成,其種類分別為Lutein、α-carotein、β-carotein 與Zeaxanthin,未發現Violanxanthin 與Antheraxanthin,北投溫泉紅藻並不俱有葉黃素迴圈。因此根據研究結果,我們認為NPQ 值與色素的關係仍有討論的空間Taiwan is resourceful in hot springs. Various hot spring algae are adapted to different types of hot springs. Hot spring algae applications are still under developing. In this work, based upon the morphology, analysis of phycobiliproteins, and rbcL sequences, the hot spring algae of Peitou is found to be Galdieria maxima (Rhodophyta). In addition, the dependence of the photosynthesis of Galdieria maxima on the light intensity was measured by Diving-PAM. The results show that the light energy availability efficiency of Galdieria maxima adapting to different light intensity exhibited different, although the electron circulate rate differed insignificantly. This suggests that the concentration of phycocyanin in Galdieria maxima may vary to attain optimal photosynthesis. Furthermore, the NPQ of Galdieria maxima increase with the light intensity. However, contradict to the theory; even under the same light intensity, the NPQ of Galdieria maxima was higher at low light zone. The carotene composition of Galdieria maxima was analyzed using HPLC and found lutein, α-carotene, β-carotene, and zeaxanthin. Violaxanthin and antheraxanthin were not present. Therefore, Galdieria maxima do not exhibit xanthophyll. Based on the results of this study, the correlation between NPQ and pigment still needs to be investigated.