全國中小學科展

Titania Nanotubes for Solar Energy and Catalysis

科展類別

臺灣國際科展

屆次

2008年

科別

工程學

得獎情形

第一名

學校名稱

Raffles Junior College

指導老師

Mr Sze Guan Kheng

作者

Yin Jianyang David

關鍵字

titania (TiO2) nanotubes ,anodizing

摘要或動機

Introduction The discovery of titania (TiO2) nanotubes suggests vast improvements over extant titania properties. Titania nanotubes are aligned in highly-ordered arrays with a large geometric surface area, making them the ideal material for many applications. However, the mechanism responsible for the growth rates of highly-ordered nanotubes with optimal adhesive properties is not fully explained or understood. Purpose of Research The aims of this project were threefold: to explore the effects of different anodizing parameters on the fabrication of titania nanotubes; to study the photocatalytic activity of the nanotubes; and to deposit gold nanoparticles into the nanotubes. Methodology Nanotube Fabrication: Titanium foil was subjected to potentiostatic anodization with the use of various fluorinebased electrolytes, anodization voltage and duration to compare the effects of different parameters. Scanning electron microscopy (SEM) was used to characterize the nanotube diameter and length of the anodized samples. Photo-electrochemica1 Water-splitting: A PEC cell was assembled using the nanotubes as the photoanode and the samples were anodically polarized in a 1M KOH electrolyte. A potentiostat was employed to control the applied bias and to measure the photocurrent response under light irradiation. Overall photoconversion efficiency (ηc) of the samples was then calculated. Catalyst Support: A gold precursor solution was prepared with HAuC14‧3H2O. Using a novel depositionprecipitation (DP) protocol, gold nanoparticles were deposited on the nanotubes. SEM was used to scan for traces of gold and their locations. Energy-Dispersive X-ray (EDX) spectroscopy was used to confirm the identity of the gold nanoparticles. Data and Discussion Nanotube Fabrication: Preliminary studies found the glycerol/water and glycerol/formamide combinations to be the most promising. In glycerol/water-based electrolytes, higher water content corresponded to a decrease in nanotube length while higher anodization voltage resulted in a significant increase in tube diameter and length. In glycerol/formamide-based electrolytes, higher water content corresponded to a decrease in nanotube diameter while higher fluorine concentration resulted in an increase in inter-tubular spacing. The effects of various fabrication parameters were better understood, contributing to greater control over array dimensions. Photo-electrochemical Water-splitting: A higher anodizaion voltage resulted in a significant improvement in photoconversion efficiency. However, this trend was reversed in chlorine-doped samples, where a longer anodization duration corresponded with better photoconversion efficiency. Doping was found to enhance the photoresponse of the samples, with 6.32 % photoconversion efficiency obtained, suggesting new strategies for light harvesting and a step closer towards commercially-viable solar energy. Catalyst Support: Gold nanoparticles (5-10 nm) were successfully deposited onto the titania nanotube samples. Based on current literature, this was the first successful attempt at depositing gold nanoparticles into titania nanotubes. An EDX spectrum confirmed the identity of the gold nanoparticles. Compared to current catalytic converters, the gold/titania nanotube structure offered a larger catalytic surface area for reactants and the ability to function at low temperatures. Conclusion: By understanding the effects of various parameters on titania nanotube fabrication, the anodization process can be optimized to enable more precise control over array dimensions. High photocatalytic efficiency has also been achieved. In addition, doping is found to improve the photoresponse of titania nanotubes. Gold nanoparticles have been deposited, to our knowledge for the first time, onto the surface and inner walls of titania nanotubes.

Titania Nanotubes for Solar Energy and Catalysis

Adobe Reader(Pdf)檔案