手語為聾啞人士日常溝通的工具,但對一般人來說這是一種難以理解的溝通方式。本實驗使用深度學習的 Yolov3 與 Yolov4 模型訓練37個國語注音符號手勢,然後再驗證模型對圖片、影片、即時(Real time)攝影辨識的正確率。
實驗結果顯示:Yolo v3 圖片辨識度效果還不錯,但影片辨識度很差,而Yolo v4 不管在靜態的圖片或動態影片都有不錯的辨識率,另外在即時的影像辨識也有不錯的效果。
雖然有部分符號的辨識度很低,但這可能是訓練時照片拍攝的問題,如果可以改進拍攝的數量和技巧,相信可以大幅提升判讀的準確率。
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及
提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式,
免費開源軟體可至LibreOffice下載安裝使用,或依貴慣用的軟體開啟文件。」