本研究使用機器學習方法,改善年長者使用手機時觸控系統對於點按位置判斷之能力。首先設計實驗比較年長者使用手機時,點按位置及手勢判斷的準確率,接著收集年長使用者的觸控軌跡及裝置相關資料,並訓練模型以減少系統判斷的錯誤率和誤差幅度。再比較及分析不同機器學習模型對於本研究之資料的適用程度及經校準後點按位置準確率的提升,進而挑選出一個能夠最有效提升點按位置準確率的模型進行點按位置的預測。實驗過後選擇最有效提升準確率的Random Forest Regressor進行其他的校正實驗及分析。使用者點按位置的預測準確率能被有效提升,準確率能提高32.3%。而最終,將訓練後的模型套回實驗用的手機程式,系統判斷受測者的點按位置能從原本的63.7%提升至97.5%。
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及
提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式,
免費開源軟體可至LibreOffice下載安裝使用,或依貴慣用的軟體開啟文件。」