現今日常生活充斥著有機污染物,然而處理含有有機污染物的廢水需要極高的成本,有鑑於此,我們參考Fenton Reaction,從成本、毒性、活化能、操作方便性、二次污染及經濟效益的多方考量下,選擇以分子篩來固定鐵、鈷、鎳、錳、鋅之金屬離子,並決定以鐵分子篩為研究主軸,並探討其催化過氧化氫對有機物的分解。鑒於粉末狀的分子篩容易流失,我們以陶土固定分子篩,製作成反應杯槽,發現了分子篩與陶土的結合性。接著藉由二氧化碳感測器及光譜儀來感測有機物的分解速率,在控制溫度,濃度等條件下,探討分解有機物的反應及其反應時的特性。由實驗結果得知,分子篩能有效分解簡單醇類、氯仿、四氯化碳及indigo。使用0.35克陶土鐵分子篩,1M 以下的雙氧水50ml,其分解異丙醇所生成二氧化碳的速率可達0.34-0.55ppm/sec 之間(3.1-4.9×10-9mol/sec),此外有機氯化物分解後生成無毒性的氯離子;indigo染料分解後褪色。本實驗證實,陶土鐵分子篩:一、可以重複使用;二、可在較低濃度環境下運作;三、在酸性較弱環境下運作;四、可在低溫環境下運作(10℃);五、不須對大量鐵離子做沉澱回收的工作(此五點優於Fenton Reaction)。相較於TAML 等人工合成的催化劑雖有避免污染的優點,但卻有無法重複使用的缺點,綜合以上幾點看來,陶土鐵分子篩在操作方便性及經濟與環境保護上具有相當的潛力及價值。With organic pollutants everywhere and the high cost to dispose of them, this study, a two-stage experiment, aimed first to evaluate the efficiency of zeolite with different metal ions and then to compare their rates in reacting to the decomposition of organic matter with hydrogen peroxide as the catalyst. Since zeolite powder can be easily washed away, we tested zeolite with clay to hold such metal ions as Fe, Co, Ni, Mn, and Zn and finally used the Argillaceous Fe-zeolite for its superiority on the basis of cost, toxin, activation energy, easy operation, and contamination. A carbon dioxide sensor and a spectrometer for visible light were used to measure the decomposition rate of organic matter under controlled temperature and resolution concentrations. The results of the experiments showed that zeolite achieved excellent effects in decomposing organic chlorides such as lower alcohols, chloroform, and carbon tetrachloride. When 0.35g of zeolite and less than 1M of hydrogen peroxide resolution were used the rate of carbon dioxide production reached 0.34-0.35 ppm/sec (3.1-4.9x10-9 mol/sec). The decomposition of organic chloride produced nontoxic Cl and the indigo dye faded after it was decomposed. Our experiments proved that Argillaceous Fe-zeolite has the following five advantages over Fenton Reaction. First, it can be reused. Second, it performed well at lower concentrations. Third, it worked well under weak acid conditions. Fourth, it worked at a lower temperature (20℃). And finally, there was no need to recycle a large amount of Fe ions. Argillaceous Fe-zeolite was also found to be superior to TAML, which has the advantage of avoiding contamination but is not reusable. The above observation and discussion demonstrate that Argillaceous Fe-zeolite possesses very significant value in terms of easy application, economy, and environmental protection.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及
提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式,
免費開源軟體可至LibreOffice下載安裝使用,或依貴慣用的軟體開啟文件。」