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Abstract

The thickness of skin graft has deterministic influences on the success of graft surgery. Experimental
measurements of skin graft thickness involve complicated specimen preparation processes followed by
optical microscopic examination, which are time-consuming and may incur inaccuracy due to possible
damage. Here we propose a novel method using air as the media to avoid direct contact of the measured
object.

The physical operation relies on the following principles: When the tip of a needle connecting to a
catheter system is placed close to the object to be measured, the air pumped forward from the catheter
system becomes impeded by the object.  The resulting backflow pressure opposing the air flow causes
an increase 1n air pressure within the catheter and inflates the bubble connected at the other end.

Balance at maximal surface tension is attained when the bubble reaches its maximum volume in
hemispherical shape. In practice, a two-needle design was used, each approaching simultaneously from
each side of the object. A micrometer was then used to read the distance between the two needle tips,
from which the film thickness was derived, subtracting the thickness of the air layer pre-calibrated using
cover glass with known thickness.

The system implemented was capable of measuring thickness on soft thin films with an accuracy of *
0.00lmm. In addition to rapid measurements with high accuracy, since the pressure exerted on the skin
graft 1s much less than in conventional calipers requiring direct contact, our method has the unique
non-distorted and non-destructive advantages.
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Measurement inaccuracy caused by improper placement of sample

“l
Apparent thickness=A-cos §

Sample placed upright  Inclined sample placement
[ 07 B FRIED o [ @ P AT ST

Tissue freezing medium

A ’ \

Slice surface

Apparent thickness=A

Concept Drawing

Needle

Airflow
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NOTE: Tube positions, air flow shapes and the amount of pressure
shown/given in the graphs below does not represent actual situations.

Air Flow

1.
The white arrows indicates the forward air flow

pressure from the tube to the object.The red
arrow indicates the initiation of back pressure.

2.
As the tube opening approachs the
object, the back pressure increases.

3 - e

123r8o

Finally, when the tube opening is close to
the object to a certain distance, the back s
pressure is equivalent to the air flow pressure,

and a balance is reached.

[ 09 PUEHSHETLER » = kA
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Innovative Thickness Measurement of
Biological Tissue by Using Maximum Bubble
Pressure Method

C.H.Lee &Y. C. Chen

Introduction

Our project is about an innovative thickness measurement system that we

devised to solve the problem of biological tissue thickness metrology.

Skin grafting is a type of graft surgery that replaces a patient’s damaged or
lost skin with healthy ones from either the patient himself or a donor. It is mostly
applied to patients with extensive wounds, burns or those in need of cosmetic
reconstruction. The thickness of skin graft can have great influences on the
cosmetic success of graft surgery, depending on the condition of the wound.
Currently, thickness measurement of skin graft is done by direct microscopy, but
we found this method to be inadequate as it can cause serious damage to the skin
sample. Applying photonic sensors to such measurement have been considered as
well, since it has the great advantage of non-contact measurement with high
accuracy. But due to skin graft’s irregularity in color and its translucent feature,

this method is not suitable.

What we did was devise a new practicable measurement system that
possessed the same key advantages of the photonic sensor, yet able to obviate the
measurement difficulties that photonic sensors faced. We integrated the concept of
maximum bubble pressure method and pneumatic gauging, and together with our
mechanical designs, we are able to measure thickness without causing distortion

and destruction of the sample, plus it can be reused after the measurement.

Theory

As we all know, photonic sensors (Fig. 1) work by emitting photons onto the
sample through fiber optics, and then determine how close the target is by the
amount of photons reflected back, which is detected by the photo-sensor. As you
can see here, when the distance between the photonic sensor and the target varies,

the reception rate changes and creates a curve effect (Fig. 2), giving us three



measurement regions: the forward region, optical peak, and the backward region.
You can then choose to operate the photonic sensor within a certain region,
pertaining to your measurement criteria, plus fine-tune its dynamic range and

sensitivity by adopting different fiber formations as shown here.

Our system (Fig. 3), which we call it the flownic sensor, functions in a
similar way. We changed the measurement media from light to air, and utilize the
similar curve characteristics derived from the maximum bubble pressure method,
which is now used for pressure indication, an entirely new concept and application
for an effect originally used in tensiometers. We use the bubble to indicate the
pressure climb within our flownic sensor’s catheter system when the sensor
approaches the target. As you can see, the pressure change creates an interesting
twin-curve effect; we call it the flownic sensor curve (Fig. 4). Like the one from
the photonic sensor, the flownic sensor curve also provides us with three
measurement regions: the static bubble region, maximum bubble pressure point,
and the dynamic bubble region, but because the latter is impractical for use, we
only adopt the prior two regions. This project currently focuses on utilizing the
maximum bubble pressure point for safe thickness measurement. In other word,
we operate our flownic sensor in the h mode (Fig. 5). In addition, the flownic
sensor curve can also be fine-tuned, but unlike the photonic sensor, we accomplish

this by altering the system design.

Device Design

We have a schematic drawing of “Model-3” (Fig. 6-1), which is divided into
four subsystems: A, the air flow supply system; B, the pressure indication system;
C, the catheter system, and D, the measurement system, which is made up of three
positioning mechanisms. On the top right-hand corner is a decomposed diagram of
our triple axes adjustment mechanism (Fig. 6-2), which is positioned on top of our
sample centering mechanism, and together with the pressure sensors, they

integrate into our pressure balance centering mechanism.

In addition, the resolution of the micrometer will be enhanced into micron

level by the computer vision with the pixel- evaluated scales.

Following is the operation of our flownic sensor (Fig. 6-3). The figure is a
twin-needle design, whose distance is controlled by the micrometer. The sample is
positioned between the needles, carefully done by our pressure balance centering

mechanism, so that it will remain in the center during the operation.



On top right-hand corner is the magnification of the bubble indicator
capillary opening, where we obverse the formation of the bubble. Then we can
calculate the thickness of the sample by subtracting twice the bubble indicated
distance, D, from the distance between the needles, X, which is derived from the

micrometer, then we get the thickness of the sample, a.

System Characterization

The following characterizations of our flownic sensor are based upon
experimental datum we obtained from the performances of Model-3. Here we
have a simple depiction of our flownic sensor. As you can see (Fig. 7 and fig. 8),
each circle represents a subsystem, and is linked together by our catheter system.
By combining the relations between different physical effects of every subsystem,
we can then establish the theory circle and the characteristics of our flownic

Sensor.

As you already know, we use the maximum bubble to indicate the pressure
change within our catheter system, as the needle approaches the sample, the
pressure within the catheter system rises. This relation is shown here (Fig. 9), and
indicated in the theory circle by this arrow. This flownic sensor curve was done
using an air flow rate of 1.1 cubic centimeters per second, and as you can see, the
bubble reaches hemispherical shape at the distance of 34 microns. Now because
the static hemispherical bubble will be replaced by a stream of bubbles once the
distance is shorter than 34 microns, which will extend the curve into the dynamic
bubble region, we only adopt the flownic sensor curve in the static bubble region,
which includes the maximum bubble pressure point (Fig. 10). By fitting the
adopted curve with a corresponding function and calculate the gradient of the
maximum bubble pressure point, we can obtain the sensitivity of the bubble. In
this case, at the air flow rate of 1.1 cubic centimeters per second, the bubble
sensitivity derived was six times 10 to the minus second power microns per pascal
plus minus 0.16%, and the resulting distance indication deviation was plus minus
0.034 microns. With such amazing datum, we believe that using the maximum

bubble to indicate distance is feasible.

Of course, different flownic sensor curve derive different sensitivity. As you
can see in the theory circle by this arrow pointing to the right, the smaller the air
flow rate, the greater the gradient of the maximum bubble pressure point (Figll),

leading to higher sensitivity and minor distance indication deviation, for instance,



the bubble sensitivity of the flownic sensor curve at the air flow rate of 0.5 c.c.
/sec. is ten to the minus second power micron per pascal, with a distance
indication deviation too small to cause any significant affect. We also discovered
something interesting from this diagram, as you can see when we fit the maximum
bubble pressure points with a corresponding function, it turns out to be an
exponential decay curve, which we call it the maximum bubble pressure curve.
Why does it resemble a decaying pressure curve instead of constant pressure
points? We believe this is because of the pressure drop caused by friction loss in

the capillaries, the stronger the air flow, the greater the friction loss.

You can understand more of the maximum bubble pressure point from the
diagram (Fig. 12), indicated in the theory circle by this arrow pointing to the left.
As you can see, the smaller the air flow rate, the shorter the distance indicated by
the maximum bubble pressure point. In addition, the reynold number calculated
within our system was 700 to the maximum, indicating stable laminar flow; one of
the important factors that promise our flownic sensor’s proper functioning. So, by
utilizing the two curves, the flownic sensor curve and the maximum bubble

pressure curve, our flownic sensor can accurately measure thickness.

Prototype Evolution

In this project, we devised several prototypes (Fig. 13-1, fig.13-2 and
fig.13-3); each played an important role in the evolution of our flownic sensor.
Among the prototype setups, the catheter system was the most challenging part of
the sensor configurations. Not only was it an integral connection unit between
subsystems, but also the key to strengthening the bonds between factors and the
establishment of our flownic sensor’s operation theory. As of today, we’ve
developed ten generations of catheter systems; each made progressive

improvements towards the stability and the versatility of our flownic sensor.

Results

In order to verify our design’s practicability, we preformed a series of
thickness validation tests, covering solid (Fig. 14) and soft samples (Fig.15). We
began with measuring the thickness of solid subjects: cover slides, which we
pre-measured its thickness with a micrometer, and then had them run over with a
stylus Instrument and being given precise thickness. The results here shows the

high correlation between the thicknesses derived from Flownic three and the



actual thicknesses of the cover slides.

So, solid subjects pass, time to measure soft subjects. For this experiment,
we used plastic wrap, which we obtained its thickness range from its manufacturer

in advance.

In addition to our measurement results, we also added those derived from a
micrometer. As you can see, the thickness derived from Flownic Three almost fit
in the thickness range every time, while the results from micrometer, are
constantly lower. This not only implies that our flownic sensor design is feasible,
but also the importance of such measurement systems due to the fact that
metrology like our flownic sensor, does not distort nor destruct the sample, yet

able to accurately measure its thickness.

After we confirmed the fact that we can measure the thickness of soft and
transparent film, we then moved on and performed a comparison test with
microscopy (Fig.16).

As you can see, the thickness derived from Flownic Three varies with the
thicknesses set by the dermatome and those measured by microscopy. So what do
the results tell us? We think that there is a serious problem with the dermatome.
The thickness of the skin samples sliced did not match the thickness settings from
the dermatome. If this speculation is true, surgeons won’t know how thick the
graft they’ll get!! We believe that our flownic sensor has the potential of
calibrating the dermatome settings so that they will tell the truth.

Future Work

Finally, I would like to invite you to revisit our project process and what we
plan to pursue in the future. We can proudly state that the roadmap of our project
has been successfully developed. More specifically, the vision of our project is
now clear. We devised a new solution, one that no one has thought of before. Our
design leads us to integrate many wonderful design developed in other fields. As
you can see that, we attempted many designs. With our design evolves along the
way, our current design not only serves our design goal but also leaves many

routes for further development.

We learned that engineering is an endless evolution. The many new

possibilities revealed in our design roadmap testify this thought. To further



improve our measurement resolution in the h mode, we are to replace the
micrometer. To use our system in the delta h mode, we will operate our flownic

sensor in the static bubble region and observes the bubble size change.

Conclusion

We developed the flownic sensor applicable to thin-film thickness metrology
without harming the sample. It has the advantage of high accuracy, high

sensitivity and high versatility to suit the different measurement criteria.
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