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ABSTRACT

We study the creation of physical adversarial examples, which are robust to real-
world transformations, using a limited number of queries to the target black-box
neural networks. We observe that robust models tend to be especially suscepti-
ble to foreground manipulations, which motivates our novel Foreground attack.
We demonstrate that gradient priors are a useful signal for black-box attacks and
therefore introduce an improved version of the popular SimBA. We also propose
an algorithm for transferable attacks that selects the most similar surrogates to the
target model. Our black-box attacks outperform state-of-the-art approaches they
are based on and support our belief that the concept of model similarity could be
leveraged to build strong attacks in a limited-information setting.

1 INTRODUCTION

With the further integration of contemporary machine learning techniques into a wide variety of
real-world domains (Krizhevsky et al., 2012; Janai et al., 2017), the question about their security
and reliability becomes central. It has been shown that all modern artificial neural network architec-
tures are susceptible to adversarial examples (Szegedy et al., 2013) — altered inputs that are almost
indistinguishable from natural data and yet classified incorrectly.

Adversarial attacks have been successfully executed in various fields, such as image classification
(Szegedy et al., 2013), speech recognition (Carlini and Wagner, 2018), and reinforcement learn-
ing (Gleave et al., 2019). An adversarial example may be used either to make the model return
any wrong output (untargeted attack) or even to shift its prediction to a desired state (targeted at-
tack). As a result, one can obtain control over the output of a model by executing a targeted attack,
which might be used for example as a tool for deceiving and penetrating facial recognition systems
(Komkov and Petiushko, 2019) or forcing self-driving vehicles to recognize stop signs as speed lim-
its (Eykholt et al., 2018). Therefore, the task of building robust and reliable models that are resistant
to adversarial attacks is a major problem for society when considering their deployment to the real
world.

The current state-of-the-art defenses against such malicious inputs are based on variations of adver-
sarial training (Madry et al., 2017) (training a model on adversarial examples instead of regular data
with the objective of classifying them correctly) and therefore efficient attack methods are vital for
improving the defenses. Models with black-box access, which is the default setting for deployment
in many domains, are particularly hard to attack due to the obscure amount of information they
provide — in contrast to the white-box scenario, they do not allow access to the model architecture
and weights and only provide their top predictions. Furthermore, multiple factors in the real world
(e.g. weather conditions) endanger the successful execution of a given attack due to the extra per-
turbations they may apply to the adversarial examples. In our work, we consider the unification of
black-box and physical attacks, which represents a realistic real-world scenario, and formulate our
main research question, namely

Can we synthesize adversarial examples using only a very limited number of queries
to the target black-box model, while maintaining robustness to physical transforma-
tions?
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A popular method for creating adversarial examples for black-box models relies on the fact that some
artificial neural networks share a lot of common properties, and consequently knowledge obtained
about one or several machine learning models could be integrated into an attack against another
similar model (Liu et al., 2016). Our intuition is that the very same principle could be leveraged to
solve our main problem. Thus, we pose the following questions:

• What kind of similarities do machine learning models exhibit?

• How can we select models that resemble our target one the most?

• How can knowledge obtained from similar models be integrated into the attack methodol-
ogy?

• What kinds of transformations are present in the real world and how can we model them
exclusively digitally?

Figure 1: Creating an adversarial example: a picture of a Collie (dog breed), which is correctly
classified by a given artificial neural network (trained on ImageNet in the current example), is in-
significantly manipulated and then classified as ice cream by the same network

We make the following contributions:

• In our study of the impact of different discrete image regions (foreground and background)
on model predictions, we observe that standard models are more sensitive to changes to the
foreground rather than to the background. The same applies to robust models to an even
greater extent.

• We propose a novel attack algorithm we call Foreground Attack. Our attack can achieve
especially plausible results, despite constraining the perturbations only to the foreground
of the given image, which supports our claim that region priors are useful for executing
attacks with relatively little information from the target model, which is the case in the
black-box scenario. We further point out that our Foreground Attack can be combined with
adversarial training to increase the robustness of a model to physical adversarial examples
by modeling the training data exclusively digitally.

• We introduce an ensemble-based transferable attack we call Selective Transfer Attack that
replaces the manual process of picking appropriate surrogate models, which is vital for its
success, with an automatic selection over a large set of available models.

• We present our Ensemble Gradient-based SimBA, which is based on one of the state-of-
the-art black-box attacks (Guo et al., 2019). We show that gradient priors obtained from
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a highly similar ensemble model are a stable and meaningful signal for selecting efficient
perturbations.

2 RELATED WORK

Physical adversarial examples. It has been shown that adversarial examples can transfer to the
real world. Kurakin et al. (2016) were the first to demonstrate that property by creating printed
photos that fool classifiers with a physical camera input. However, their photos are brittle to real-
world transformations and therefore not suitable for a realistic attack. Athalye et al. (2017) proposed
a method for synthesizing both 2D and 3D physical adversarial examples that are robust over a
chosen distribution of transformations. Yet, generating such objects and putting them into a real-
world setting is a rather computationally expensive process that is highly insufficient during the
adversarial training of a model, which receives input from a physical camera. Other approaches use
specially designed objects, such as printable stickers (Brown et al., 2017), which are placed onto or
near a certain physical object in order to affect the prediction about it. Those objects are nevertheless
usually quite noticeable and make the adversarial examples easily distinguishable from natural data.

Black-box attacks. Models with black-box access are especially hard to attack, due to the limited
amount of information they provide. Papernot et al. (2016)’s model substitution method produced
the first full black-box adversarial attack, but it is considered quite ineffective nowadays since train-
ing an entire model from scratch is a way too complex and slow task. Ensemble strategies (Liu et al.,
2016; Hang et al., 2019) have proven to be an effective way for synthesizing adversarial examples
that can transfer across a variety of models. A critical component of theirs is the surrogate model
selection process, which is often coarse-grained and done manually. Guo et al. (2019)’s SimBA is
currently one of the state-of-the-art black-box attacks. One of its main downsides is the uniform
coordinate sampling process. Yang et al. (2020) propose a way to utilize gradient priors to improve
SimBA’s efficiency. We further develop their idea, by demonstrating that ensemble models selected
through our model similarity evaluation technique provide more stable and meaningful priors.

3 BACKGROUND

In this section, we introduce the concepts and notation needed to address the main research question
and to describe the proposed algorithms precisely.

Adversarial attacks Suppose we have a target classifier f(x, θ) with parameters θ, and a natural
input x with label y. We refer to the prediction of the model about the probability of x belonging to
y as f(x, θ)y . If we denote the standard cross-entropy loss function by

l(p, y) = − log

(
exp(py)∑
i exp(pi)

)
, (1)

where p = f(x, θ), the process of generating an adversarial example can be expressed as the opti-
mization problem

max
δ∈∆

l(f(x+ δ, θ), y), (2)

where ∆ = {δ : ∥δ∥p ≤ ϵ}. The most popular perturbation sets are the l2 and the l∞ balls, due to
the simplicity of projecting onto them.

We will consider Projected Gradient Descent (Madry et al., 2017) as a way of tackling the optimiza-
tion problem in 2. If we refer to the gradient of the loss function with respect to a given image as
∇xl, then the adversarial perturbation δ can be iteratively updated as

δ : P(δ + σ ∗ ∇δl(f(x+ δ, θ), y)), (3)

where σ is the chosen step size and P is the projection over the ball of interest.
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Adversarial training The given model architecture can increase its robustness by replacing the
regular training objective

min
θ
l(x, y)

with its adversarial training counterpart (Madry et al., 2017), viz.

min
θ

max
δ∈∆

l(f(x+ δ, θ), y). (4)

Note that the robustness of a given model is relative to a chosen lp ball with a small radius ϵ, because
a large radius (e.g. 1 for a l∞ ball) would mean that the image may be perturbed to an extent that it
is either no longer recognizable even to humans or it portrays an entirely different concept.

4 METHODOLOGY

Gradient analysis. The influence of different image regions on model predictions is nonuniform
and our intuition is that the foreground (rather than the background) encodes more vital information
associated with the real label of a given image (e.g. if an image is labeled as “horse”, then its
muzzle is more directly associated with the class label than the grass surrounding it), even though
it has been demonstrated that the background is also quite a helpful signal (Xiao et al., 2020). The
gradient ∇xl provides useful information about the relative impact of each value of the image and
many successful white-box attacks are built on top of that property (Goodfellow et al., 2014; Madry
et al., 2017). We analyze the gradients of the loss functions of models with respect to a variety of
annotated images to validate our hypothesis about the importance of the foreground. Let us denote
an annotation mask by s, so that

si,j,k =

{
1, if (i, j, k) is inside the foreground of x
0, otherwise

, (5)

where i ∈ [3] (number of channels), j ∈ [W ], k ∈ [H], and W and H are respectively the width and
the height of x. We calculate the gradient ∇xl and then its mean (µ ∈ R3) and standard deviation
(σ ∈ R3) channel-wise. We standardize the gradient by updating

∇xli,j,k =
∇xli,j,k − µi

σi
(6)

Finally, we segment the foreground ψ = s ∗ |∇xl| and the background ψ̂ = |∇xl| − ψ from the
absolute value of the standardized gradient and compare their mean values to gain insight about their
relative importance.

Foreground Attack In order to further support our claim that region priors are an important sig-
nal for adversarial attacks, we develop a novel technique we call Foreground Attack. It is motivated
by our findings that the foreground of an image affects model predictions a lot more than its back-
ground (see Figure 5). In our Foreground Attack, we just use an annotation mask s to constrain the
adversarial noise δ to the foreground of the image x, namely

x̂ = x+ s ∗ δ, (7)

where x̂ is the perturbed image. Our technique is universal and can be combined with any other
kind of attack because all kinds of image manipulations can be represented as additive noises (by
just subtracting the original version of the image from the transformed one). In our experiments, we
integrate it into the optimization procedure of PGD.
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Figure 2: Comparison between a standard approach for building defenses against physical attacks
and one employing our Foreground Attack (the photo of the adversarial turtle is from Athalye et al.
(2017)’s paper)

Systems that collect input data from physical cameras (e.g. self-driving vehicles, facial recognition
systems) are highly susceptible to physical adversarial examples. As such systems are consistently
gaining more popularity, building defenses that are robust against such physical attacks becomes
a vital task. In a realistic setting, the adversary cannot carefully apply perturbations to all objects
that are going to be captured by the camera (e.g. the sky may be captured, and it is hard to apply
permanent physical manipulations to it). Usually, such attacks are executed by placing small objects
near the items that have to be classified (e.g. placing a tiny sticker on a stop sign (Brown et al.,
2017)). Building defenses against such attacks is not straightforward, because creating physical
adversarial objects is a slow and costly process, and the execution of such attacks has to be integrated
into the adversarial training procedure. However, our Foreground Attack can apply perturbations
directly to the foregrounds of the taken photos (which are passed to the model for classification), thus
making the chosen objects in the photos look modified. We constrain the perturbations in the photos
to specific areas, as real-world physical attacks are constrained too. Therefore, our Foreground
Attack could be used for building defenses against realistic attacks, as the final inputs to the target
models are just 2D images (see Figure 4).

Selective Transfer Attack. We consider a set of n pre-trained models G = {g1, ..., gn}, where
each model architecture gi is parameterized by different parameters θi, Our goal is to select the most
similar ones to our target black-box model f(x) (the parameters θ are unknown). As a metric of
similarity between a given surrogate and our target model, we consider the sum of the cross-entropy
losses between the respective predictions of the available models for a given image over a set of
transformations (e.g. Gaussian noise), with lower metric values corresponding to higher degrees of
similarity. We evaluate all our models from G on the given metric and choose k models with the
lowest corresponding values, which form the set of surrogates S = {g1, ..., gk}.
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Algorithm 1 Surrogate models selection
1: Input: number of iterations t, target model f(x), image x, set of n pretrained modelsG, number

of models to select k, standard deviation σ (Gaussian distribution)
2: Output: set of k models
3: s := 0n
4: for i = 1 to t do
5: Sample noise δ with the same size as x from the Gaussian distribution N (0, σ2, I)
6: Compute the current model prediction p = f(x+ δ)
7: Evaluate the predicted label ŷ = argmax

y
py

8: for j = 1 to n do
9: Compute the cross-entropy loss l(gj(x+ δ, θj), ŷ) and add it to sj

10: end for
11: end for
12: return the k models {g1, .., gk} from G with the lowest respective values at s

After the selection process, we optimize the image x using PGD (shown in 3) using the loss

le(x, y) =

∑k
i=1 l(gi(x, θi), y)

n
(8)

over S. Our approach queries the target model only about the arbitrary set of transformations of the
given image.

The selected surrogates do not exhibit equally high degrees of similarity to the target model, so the
ensemble loss le could be estimated proportionally to the relative similarity scores s, viz.

le(x, y) =
k∑

i=1

((gi(x, θi), y) ∗ wk−i+1), (9)

where
w =

s

|s|1
, (10)

and s contains the sorted in increasing order relative similarity scores only for the selected surrogates
(corresponding to the indices with the lowest respective values). The model with index i is assigned
weight wk−i+1 because we reverse the order of the weights so that the model with the lowest score
has the highest weight (as lower scores correspond to higher degrees of similarity to the target one).

Ensemble Gradient-based SimBA It has been demonstrated that black-box attacks can be exe-
cuted without any priors by observing the change of the target model’s predictions over a distribution
of perturbations of the given image x. These observations can be leveraged by estimating∇xl (Wier-
stra et al., 2014) and then combined with a standard gradient-based optimization method, such as
PGD, to craft adversarial examples. Interestingly, more efficient results can be achieved by using a
much simpler approach, which directly applies perturbations that maximize l(f(x + δ), f(x) (Guo
et al., 2019; Andriushchenko et al., 2020).

One such approach is Guo et al. (2019)’ Simple Black-box Attack (SimBA), which randomly per-
turbs individual coordinates of the chosen image and keeps only the perturbations that optimize its
objective. However, one of our main goals is to minimize the number of queries to the target model,
and therefore an approach without any priors is an inferior choice.

Yang et al. (2020) further improved this idea by leveraging gradient priors obtained from a surrogate
model. Instead of sampling coordinates uniformly, they consider a surrogate model fs(x, θs) and
sample coordinate-wise perturbation with probabilities proportional to |∇xl(fs(x+δ, θs), y)|, where
y is the correct label of x and | · | denotes absolute value.

However, we believe that by randomly choosing a surrogate model to guide the sampling procedure
it is possible that the surrogate model could provide misguiding instructions if it has learned sub-
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stantially different representations of the training data in comparison to our target model. We instead
point out that we can use the selection procedure described in Algorithm 1 to sample surrogates that
are highly similar to our target one, which would induce a higher correlation with their respective
gradients with respect to the input. Furthermore, it has been shown that ensemble methods (Liu
et al., 2016) provide more robust predictions. We, therefore, augment Yang et al. (2020)’s approach
by replacing the single surrogate model with an ensemble one, selected using our model similarity
metric.

Algorithm 2 Standard SimBA
1: Input: target model f(x), original
2: image x, original label y,
3: Output: adversarial example x
4: Parameters: step size σ, number of
5: iterations n, dimensions of x: W , H , C
6: p← f(x)y
7: for i = 1 to n do
8: Sample uniformly w ∈ [W ], h ∈

[H], c ∈ [C]
9: xw,h,c ← xw,h,c + σ

10: p′ ← f(x)y
11: if p′ < p then
12: p← p′

13: else
14: xw,h,c ← xw,h,c − 2 ∗ σ
15: p′ ← f(x)y
16: if p′ < p then
17: p← p′

18: end if
19: end if
20: end for
21: return x

Algorithm 3 Ensemble Gradient-based
SimBA

1: Input: target model f(x), original im-
age x, original label y

2: Output: adversarial example x
3: Parameters: step size σ, number of
4: iterations n, dimensions of x: W , H , C

(width, height, number of channels)
5: Select a set surrogate models fs using

Algorithm 1
6: p← f(x)y
7: for i = 1 to n do
8: Estimate g := ∇xls(x, y) (see Algo-

rithm 1
9: Sample coordinate indices (w, h, c)

from x with probabilities proportional to
|g|

10: xw,h,c ← xw,h,c + σ
11: p′ ← f(x)y
12: if p′ < p then
13: p← p′

14: else
15: xw,h,c ← xw,h,c − 2 ∗ σ
16: p′ ← f(x)y
17: if p′ < p then
18: p← p′

19: end if
20: end if
21: end for
22: return x

Robustness to real-world transformations. During the preparation of a physical attack (e.g. a
sticker placed on a stop sign in order to fool the computer vision system of a self-driving vehicle
(Eykholt et al., 2018)) additional real-world factors, such as weather change or a different viewpoint,
should be considered because they alter the captured by a camera adversarial example, which might
no longer be able to fool the target model. In order to circumvent this problem, we first develop a
framework for transformations, which digitally resemble real-world phenomena (light adjustment,
noise addition, blurring, rotation, and translation), and then use the technique Expectation Over
Transformation (EOT) (Athalye et al., 2017) to optimize the objective of our examples to maximize
the cross-entropy loss over a chosen distribution of transformations T , created with our transforma-
tion framework, which can be expressed as the optimization problem

argmin
δ

Et∼T log(f(t(x+ δ))y). (11)
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5 EXPERIMENTS & RESULTS

Setup. Every method mentioned in the paper is implemented from scratch in Python. We eval-
uate our methods on randomly selected samples from ImageNet (Deng et al., 2009) and COCO
(employing both images and annotation masks) datasets.

Gradient analysis. For each image in a given COCO class, we compute respectively the seg-
mented foreground and background mean values. Then, we compute the final foreground and back-
ground mean values for the whole class (by averaging the results for the different images), and
finally plot and analyze those values.

Our empirical evidence (see Figure 5) supports our claim that foregrounds indeed have a broader
impact on model predictions than backgrounds, which is a possible explanation for why our Fore-
ground Attack is successful despite the highly constrained perturbation space.

We find a more interesting correlation when we run the same experiment, replacing the regular model
with a robust one (adversarially trained). We observe that robust models are even more sensitive to
the foreground (see Figure 6), which implies that they may learn better representations that align
with humans’ (humans also receive a more useful signal from the foreground when recognizing an
object) and is another argument for Salman et al. (2020)’s claim that robust models transfer better
(the whole idea of transfer learning is to use already obtained meaningful representations).

Foreground Attack. We compare a PGD attack with our Foreground Attack (which too uses
PGD as an optimization algorithm). We however note that it can be integrated with any kind of
optimization technique because all kinds of perturbations can be represented as additive noises. We
evaluate both standard white-box attacks and black-box ensemble transferable attacks (the surrogate
models are manually selected from the list of available ones).

Type ϵ (l∞) Queries Transferable Success rate

Regular attack 0.031 50 False 100%
0.063 128 True 100%

Foreground Attack (our) 0.031 50 False 96%
0.063 128 True 84%

Table 1: Comparison between regular PGD attack and Foreground PGD attack (standard ResNet50
trained on ImageNet used for evaluation)

Our results suggest that the foreground of the image is indeed a useful signal for executing attacks.
Our Foreground Attack has high success rates both during white-box and black-box scenarios (see
Table 1), even though the perturbation space is quite constrained — the images used are mainly
photos of airplanes, in which the foregrounds usually cover relatively small parts of the photos.

Selective Transfer Attack and Expectation Over Transformation We evaluate our Selective
Transfer Attack and compare it to a standard ensemble-based transferable black-box attack. Both of
the approaches have the additional objective of producing robust adversarial examples, which they
optimize via EOT.

Our Selective Transfer Attack outperforms the standard approach for synthesizing transferable ad-
versarial examples even when using fewer surrogate models (see Table 2), which means that our
attack is both more efficient and computationally optimal, and also implies that evaluating similar-
ities between models over a distribution of input transformations is a sufficient metric for selecting
surrogates that closely resemble the target. Our results for the standard transfer attack may however
vary, because the surrogates are chosen uniformly, thus repeating the same experiment might hold
different results (the chosen surrogates may be more or less relevant). Selective Transfer Attack is
also not purely deterministic (it samples Gaussian noise), but is more consistent when querying the
target over a large distribution of transformations.
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Type ϵ Surrogates Queries Success rate

Standard transfer attack 0.016 (l∞) 5 50 58%
0.016 (l∞) 10 50 75%

Selective Transfer Attack 0.0156 (l∞) 5 50 87%
0.0156 (l∞) 10 50 93%

Table 2: Comparison between standard transferable black-box attack with random surrogate sam-
pling and and with our Selective Transfer Attack (both utilizing EOT)

Ensemble Gradient-based SimBA We compare our ensemble gradient-based variation of SimBA
with the original approach. It is important to point out that our ensemble gradient-based sampling
approach can be integrated with any attack that uses coordinate-wise sampling (such as SquareAt-
tack (Andriushchenko et al., 2020)).

Type ϵ Queries Success rate

Original SimBA 0.126 (l∞) 1400 66%

Gradient-based SimBA (our) 0.05 (l∞) 1400 66%

Table 3: Comparison between the original SimBA and our ensemble gradient-based approach (eval-
uated on ResNet50 as target model and Inception-v4 as surrogate)

Our results support the claim that gradient priors, obtained via a well-selected ensemble model, are
indeed a useful signal, as our Ensemble Gradient-based SimBA is able to achieve the same success
rate as the original approach when constrained by a l∞ ball with a much smaller radius (see Table 3).
While ensemble-based transferable attacks do not hold any guarantees that the generated adversarial
example will be able to fool the target model, our Ensemble Gradient-based SimBA’s focusing on
only fooling the target model (which in turn requires a higher number of queries).

6 CONCLUSION

In this paper, we study the problem of synthesizing adversarial examples against black-box models
using only a limited number of queries, with the additional objective for these examples to be robust
to physical transformations to be exploitable in a realistic setting (e.g. attacks against self-driving
cars or facial recognition systems). We observe that models, especially robust ones, are more sus-
ceptible to changes in the foregrounds of the images. This motivates our Foreground Attack, which
is able to achieve satisfactory results despite the highly constrained perturbation space and serves
as another argument for our claim that the different regions of a given image do not equally con-
tribute to model predictions. Additionally, we point out that our Foreground Attack could be used
to synthesize photos in which certain objects appear adversarial, and consequently to build defenses
against physical adversarial examples exclusively digitally. We also introduce a novel method for
surrogate model selection via a transformation-based similarity metric and demonstrate that the
choice of surrogate models is vital for the success of ensemble-based attacks. Finally, we propose
a new black-box attack, which outperforms the state-of-the-art method it is based on, and show that
carefully selected surrogate models can provide useful signals for the attack.

There is clearly further work to be done on leveraging techniques such as meta-tailoring (Alet et al.,
2020) to assess whether training over small amounts of data can further increase the resemblance
between the surrogates and the target model. In order to verify the generality of our techniques,
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evaluation on a wider variety of models should be performed, including real-world computer vision
systems such as Google Cloud’s Vision API1 or Clarifai2.
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A PERTURBATION SETS

(a) ϵ = 2
255

(b) ϵ = 8
255

Figure 3: Adversarial examples, constrained by l∞ balls with different radii

B ADVERSARIAL TRAINING

Figure 4: Comparison between the objectives of normal training and of adversarial training
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C GRADIENT ANALYSIS RESULTS FIGURES

Figure 5: Comparison between foreground and background mean values (obtained via a regular
ResNet50 trained on ImageNet) for 20 arbitrary COCO classes

Figure 6: Comparison between foreground and background mean values of a regular and of a robust
ResNet50 (both trained on ImageNet) for 20 arbitrary COCO classes
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D IMPLEMENTATION LIBRARIES

We have utilized the following Python libraries:

• PyTorch 3

• NumPy 4

• matplotlib 5

• robustness 6

• pandas 7

• pretrainedmodels 8

E AVAILABLE SURROGATES FOR SELECTION

The models are loaded using the pretrainedmodels library8

• mobilenet v2
• shufflenet v2 x0 5
• squeezenet1 1
• mnasnet1 0
• googlenet
• resnet18
• resnet34
• resnet50
• resnet101
• resnet152
• fbresnet152
• bninception
• resnext101 32x4d
• resnext101 64x4d
• alexnet
• densenet121
• densenet169
• densenet201
• densenet161
• vgg11
• vgg11 bn

• vgg13
• vgg13 bn
• vgg16
• vgg16 bn
• vgg19 bn
• vgg19
• nasnetamobile
• dpn68
• dpn68b
• dpn92
• dpn98
• dpn131
• dpn107
• xception
• senet154
• se resnet50
• se resnet101
• se resnet152
• se resnext50 32x4d
• se resnext101 32x4d
• cafferesnet101

3https://github.com/pytorch/pytorch
4https://github.com/numpy/numpy
5https://github.com/matplotlib/matplotlib
6https://github.com/MadryLab/robustness
7https://github.com/pandas-dev/pandas
8https://github.com/Cadene/pretrained-models.pytorch
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F EXPECTATION OVER TRANSFORMATION

(a) Original (b) Light adjustment (c) Noise addition

(d) Blur (e) Translation (f) Rotation

Figure 7: Types of transformation implemented in our framework

Transformation Minimal value of σ Maximal value of σ

Light adjustment -0.1 0.1

Noise addition 0.0 0.05

Translation -10 10

Blur 0 8

Translation -10 10

Rotation -35 35

Table 4: Minimal and maximal values of the parameter σ for each kind of transformation
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G SAMPLE ADVERSARIAL EXAMPLES

We display natural data on the left and their corresponding adversarial examples on the right. The
digital images are labeled with the classes predicted by a standard ResNet50, whereas the physical
are evaluated using MobileNetV2.

G.1 PHYSICAL

(a) Original (b) Adversarial

(c) Original (d) Adversarial
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(e) Original (f) Adversarial

G.2 DIGITAL
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【評語】190045 

This project studies limited query black-box adversarial 

attacks in the real world. Three algorithms are presented in the 

project report and experimental results are discussed in depth. 

The overall quality of this project report is quite good. 
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