
190043

2022年臺灣國際科學展覽會
優勝作品專輯

作品編號 190043

參展科別 電腦科學與資訊工程

作品名稱 Development of an autonomous Search and

Rescue Drone

得獎獎項

國 家 Switzerland

就讀學校 Berufs- und Weiterbildungszentrum Buchs

指導教師

作者姓名 Dominic Rinderer

關鍵詞 Drone, Search and Rescue

i

作者照片

1

1 Foreword

Nowadays, news services report more and more about environmental disasters. People must

be rescued from forest fires or floods. Emergency forces can no longer keep up with evacuating

and rescuing people. After the environmental disaster the search for survivors goes on for

weeks. Helicopters fly non-stop, rescue workers fight their way through the rubble. And with

the climate getting worse and worse, there's no end in sight. That's why, I thought about what

I could do to make the rescuers' work easier.

From an early age I have been fascinated by flying objects of all kinds. At the age of eight I got

my first RC helicopter and since then RC flying is one of my passions. At the beginning of my

apprenticeship as a computer scientist I discovered programming. I started reading up on the

field of Artificial Intelligence. Unfortunately, I never got to implement a larger project with an AI

(artificial intelligence).

I will try to combine these two technologies - AI and drone. The goal of this project is to develop

an autonomous Search and Rescue (SAR) drone. I will plan the software and implement it

accordingly.

The Search and Rescue drone is designed to fly over a predefined area in the event of a

natural disaster. In this area, it autonomously searches for survivors who need to be rescued.

Compared to conventional search and rescue missions with helicopters, this has many ad-

vantages. The biggest of these is the difference in cost.

This paper will first cover the theory and then the implementation, functionality, and difficulties

I had during the implementation.

2

2 Technology drone

On a beautiful, sunny day, you walk along a large lake. The birds are chirping, the cool wind is

blowing through your hair, the children are playing on the shore. Suddenly, a loud whirring

noise shatters the pleasant atmosphere. It's a drone! Twenty years ago, this scenario would

have been unlikely. In recent years, there has been a huge hype towards drones. Nowadays

you see them everywhere.

Drones are flight systems that can fly without a pilot. The pilot controls the drone from a dis-

tance. Originally, drones were developed for the military. They served mainly as target drones

in anti-aircraft exercises. That way, no one came to harm. Today, things are different. Drones

are used in a wide variety of applications. Among others, for intelligence, police, civil/ commer-

cial or scientific purposes. (Unmanned Aerial Vehicle, 2019)

3 Search and Rescue drones

In recent years, drones have become integrated into the Search and Rescue sector. Drones

can be equipped or expanded in many ways. For example, by adding cameras or sensors.

These allow the drone to have an overview from above and collect data that can be analyzed

to gain important information. Such systems are accessible to many user groups at low cost.

For example, search missions using drones equipped with thermal imaging cameras are less

costly than helicopter missions. In addition, helicopters are limited by their flight altitude.

Drones can fly lower and accordingly reach places that are inaccessible to helicopters.

Drones help police investigate crime scenes or search for criminals. Firefighters use drones to

analyze fires and to search for missing persons. They are often used in areas that are difficult

for humans to reach. This is also the case, for example, at the North Sea and Baltic Sea. There,

the German Lifesaving Society uses drones to save people from drowning. The drone can

locate swimmers with a thermal imaging camera and drop rescue buoys. In the future, the

drone of the startup "Bluebird Mountain" will speed up the search for buried avalanche victims

and thus save lives. The drone is thrown into the air by the skier or snowboarder as soon as

an avalanche starts behind him. The drone then follows the rider's avalanche transceiver and

circles above the accident site as soon as he is buried. (These are the drones of the future,

2019)

3.1 Study on drones in rescue operations

In September 2018, a study was conducted to see if rescue workers could use drones to find

victims faster. The study sent randomly selected teams of searchers to find simulated victims

in the rocky fields and cliffs of Ireland and

Wales. Thirty teams used commercially avail-

able drones with the standard built-in cameras,

while the other 20 teams searched for victims

on foot. Only 17 of the ground teams found

their victims. In comparison, 23 drone teams

found their victims. These numbers indicate

that Search and Rescue protocols using

drones are not advanced enough to take max-

imum advantage of drone technology. How-

ever, drone teams found their victims an average of 191 seconds faster. That's more than 3

minutes!

Searchers in the study said that finding victims with the drone was much more difficult than

they would have expected. This shows that it is important to develop new procedures in this

Figure 1: Study on drones in rescue operations

3

area: What flight patterns should be flown? What altitude provides the best coverage? What

sensors are best suited to detect missing persons? Which areas are best searched by ground

troops and which by drones? Answering these questions won't be easy, but it will have a pow-

erful impact. (Drone Efficacy Study, 2018)

3.2 SAR drones on the market

Nowadays, there are many different drones designed for search and rescue missions. Some

are even autonomous or have expensive infrared cameras. Below are some drones that are

now available on the market.

3.2.1 Nokia Drone Networks

Nokia Drone Networks, based on Nokia Digital Automation Cloud, is a solution that includes

Nokia drones, private and secure mobile broadband, cloud connectivity and a control center.

With this solution, a fleet of drones can fly automated

missions controlled from the command-and-control

center. Data and information are collected in the pro-

cess, for example, to meet business needs related to

security and transportation, and to facilitate opera-

tions in mission-critical situations such as public

safety. The drones are connected via a private mo-

bile broadband network to ensure they are not af-

fected by congestion on the public network, and man-

ual operation is also possible if required.

Nokia drones can be equipped or expanded in many ways, for example by adding cameras or

sensors. The drone can also be equipped with a built-in camera as well as speakers, search-

lights, customizable sensors for smoke, motion, radiation and much more.

This solution from Nokia is the most advanced on the market so far. (Nokia Drone Networks,

no date)

3.2.2 DroneSAR

DroneSAR is not a drone, but a software. The app can be installed on any iPad. It connects to

commercially available DJI drones, such as the DJI Mavic Pro. This drone is then controlled

by the app during a Search and Rescue mission. With the app it is possible to define flight

routes, mark and share important mission points, stream the position and live video of the

drone over the internet. (Drone Software that saves lives, 2018)

This app is very similar to my project, with the difference that my navigation system is not as

sophisticated, and my software can't share the video data over the Internet. But my system

has built in image recognition.

3.2.3 DJI - M200 Series

This series of drones is the latest form DJI. They are

specifically designed for industrial applications. The

drone is resistant to rain, has stereo vision systems,

runs on a two-battery system, and even has a modu-

lar expansion port to connect your own hardware. The

drone is foldable like other models from DJI. The flight

time is 35 minutes, and the maximum payload is 2

kilograms. The special thing about the drone is that it

has a dual-gimbal system. This means that up to two

Figure 2: Nokia Drone Networks

Image 3: DJI Matrice 200 Series V2

4

cameras can be used at the same time. This allows you to use a special camera with optical

zoom and an infrared camera at the same time. This is ideal for search and rescue missions.

Like all DJI drones, the drone has a collision avoidance system. This allows the pilot to con-

centrate on the mission. (Matrice 200 Series, 2019)

This drone is better than the drone I have. However, it needs to be flown by a pilot. It also does

not have built-in image recognition software.

4 Interviews

I have conducted interviews in the USA and Switzerland about search and rescue drones.

4.1 Interview with Buchs Fire Department

In Buchs, I conducted an interview with Marcel Senn, the commander of the Buchs Fire De-

partment. I asked him questions regarding drone operations at the Buchs Fire Department:

How long has the Buchs Fire Department had the drone?

We have been using a drone since 2016.

What kind of drone are we talking about?

The Buchs Fire Department has a DJI Phantom 3 Pro.

Under what circumstances is the drone used?

The drone is used in chemical spills and fire incidents.

Is the drone helpful?

Yes, you can get a quick and safe overview during chemical spills and fire operations.

How often is the drone used?

Rather rare, as chemical spills don't happen very often.

How does a drone mission work?

A dedicated drone pilot flies the drone mission according to the wishes of the incident com-

mander. The pilot stands next to the incident commander and thus has an overview of the

situation.

Does the drone need special maintenance?

No, it does not need any special maintenance. Only the batteries need to be charged after

each use.

4.2 Interview with Woodville Fire Department

I was in the US for the fall holidays visiting family. While there, I had the opportunity to ask the

commander of the fire department for an interview at a charity event. Delighted, he accepted.

Woodville is a small village in the north-east of the

USA. It is in the state of Ohio.

The Woodville Fire Department does not have its

own drone. It regularly borrows the drone from the

Woodville Police Department. However, the sur-

rounding fire stations have their own drones. The

Woodville Fire Department is not very large. The

drone is operated by a specially trained firefighter. It

is mainly used to see the extent of a fire or to survey

the surrounding area to plan the best strategy to Image 4: Woodville Fire Department

5

fight the fire. The drone is mainly used to gather information. It is also used in the search for

missing persons.

While I was in the US, an elderly woman suffering from dementia went missing. The Woodville

Fire Department had three drones out searching for the woman. One of the three drones was

a very expensive one, specially designed for Search and Rescue missions. It even had infrared

and night vision. Thanks to the drones, the woman was found in a remote forest. Without this

technology, the woman might have remained missing forever. After this incident, the Woodville

Fire Department decided to get a drone of their own.

5 Artificial intelligence

Artificial intelligence is a branch of computer science that deals with the automation of intelli-

gent behavior and machine learning. Artificial intelligence is not about real intelligence. Rather,

it attempts to simulate "intelligent behavior" through simple algorithms. In this process, a com-

puter is built and programmed in such a way that it can process problems relatively inde-

pendently. (Coastal Intelligence, 2019)

5.1 Haar-cascade detection

Object recognition using Haar feature-based cascade classifiers is an effective object recog-

nition method invented by Paul Viola and Michael Jones. It is a machine learning based ap-

proach where a cascade feature is trained from many positive and negative images. It is then

used to recognize the same objects in other images.

Paul Viola is a computer vision researcher, former MIT professor and vice president of science

for Amazon Air. For his work on the Haar-cascade object recognition method, he received the

Marr Prize in 2003 and the Helmholtz Prize from the International Conference on Computer

Vision in 2013. Michael Jones is also a computer vision researcher. He won the Marr Prize

with Paul Viola and later the CVPR Longuet-Higgins Prize.

6

To train the classifier, many positive images are needed. These contain the object that should

be recognized. Many negative images are also needed. These do not contain the object. Then,

using the Haar features shown below, different features are detected. Each detected feature

is a single value, calculated by subtracting the sum of the pixels under the white rectangles

from the sum of the pixels under the black rectangles:

Edge features

Line features

Four-rectangle features

Image 5: Hair features

These features are then used to categorize smaller sections of the image. The human face

serves as an example. In all human faces, it is common for the region of the eyes to be slightly

darker than the cheeks. Therefore, a common Haar feature for face recognition is a set of two

adjacent rectangles that lie over the eye and cheek region. The position of these rectangles is

defined relative to a recognition window, which acts like a bounding box for the target. Here is

an example of a human face:

Figure 6: Hair

The great advantage of Haar-like features is the computational speed. Due to the use of inte-

gral images, a Haar-like feature of any size can be computed in constant time. Therefore, I

used it for person detection as well. When flying by, the persons must be detected as fast as

possible i.e., before the drone has flown past the person. (Cascade Classifier, 2019)

5.2 Deep learning based estimation of human pose

Pose estimation is a general problem in image recognition. It involves an attempt to estimate

the position and orientation of an object. This is usually done by trying to detect and describe

key points of the object. Until recently, there has been almost no progress in pose estimation

7

due to the lack of good datasets. However, in recent years some good datasets have been

published:

• COCO Keypoints challenge (COCO 2018 Keypoint Detection Task, 2018)

• MPII Human Pose Dataset (MPII Human Pose Dataset, 2018)

• VGG Pose Dataset (Human Psoe Evaluator Dataset, 2018)

The pose estimation model I used to distinguish help-seeking individuals from ordinary individ-

uals is based on a paper called "Multi-Person Pose Estimation" (Pose Estimation, 2017) , writ-

ten by the Perceptual Computing Lab at Carnegie Mellon University.

5.2.1 Architecture

The model takes as input an arbitrary image. This is processed, and as output you get the 2D

positions of key points of each person in the image. This works in three stages:

Stage 0: The first ten layers of VGGNet are used to create feature maps for the input

image.

Stage 1: This stage consists of two parts. In the first part, a multi-stage CNN is used to

predict a set of 2D confidence maps of body part positions. For example, these

body parts can be the elbow or the knee. The following image shows the confi-

dence map for the left shoulder:

Image 7: confidence-left-shoulder

The second part of this stage attempts to predict 2D vector fields of partial relationships be-

tween key points. The figure below shows a partial affinity between neck and left shoulder:

http://cocodataset.org/#keypoints-2018
http://human-pose.mpi-inf.mpg.de/
http://www.robots.ox.ac.uk/~vgg/data/pose_evaluation/
https://arxiv.org/pdf/1611.08050.pdf

8

Figure 8:heatmap-left-shoulder

Stage 2: The trust and relationship maps are analyzed to create the 2D key points for all

the people in the image. (Deep Learning based Human Pose Estimation, 2018)

6 Concept

The plan for this Project is to develop an autonomous Search and Rescue drone. Since my

financial resources and time are limited, I am only writing the software. I am not building my

own drone; therefore, I need to buy a drone as a base for this project.

My Search and Rescue drone is a prototype. I didn't have much time, so the solution is not the

best. It is meant to show that the system I developed can work in principle. The idea is that it

can fly over a predefined area in the event of a natural disaster. In this area it autonomously

searches for survivors who need to be rescued. Compared to conventional search and rescue

missions with helicopters, this has many advantages. Missions with a helicopter are very ex-

pensive. You buy a drone once and then have almost no further follow-up costs. A helicopter

needs constant maintenance. It also needs specially trained pilots, which cost a lot.

7 Planning

The first thing I had to think about was what the autonomous Search and Rescue drone should

be able to do. Accordingly, I defined goals:

7.1 Basic objectives

The aim is for the Search and Rescue drone to be autonomous, i.e. to be able to carry out a

mission without human interaction. A mission consists of flying from a starting point to a pre-

defined area. This area is then flown over by the drone. While flying over the area, the drone

uses image recognition to search for survivors or those in need of rescue. It should be able to

distinguish whether a person needs to be rescued or not. Rescuers do not need to be rescued.

If it finds a person who needs to be rescued, this is reported to the operations center. That

dispatch center can then send a helicopter to recover the person. Here is a summary of the

basic objectives for the Search and Rescue drone:

• The drone can autonomously fly over an area

9

• The drone can detect humans

• The drone can distinguish between people seeking help and those not seeking help

• The drone can notify an operations center

7.2 Technical goals

Above I have defined the basic goals. Since this system is technically more complex and there

are many intermediate steps, I distinguished between technical and basic goals. The technical

goals are the following:

• Communication between drone and laptop works

• The navigation system works

o Mission area can be defined

o Validation of the mission area (In range, not too big?)

o Drone can fly to mission area

o Drone can efficiently fly over mission area

o Drone can fly back to the starting point after the mission

• Autonomous flying works

• Mission can be cancelled manually

• Streaming the video data to the laptop works

• Person recognition works

• Distinguishing between those seeking help and those not seeking help works

o Attitude of the person can be recognized

o Recognize if arms are pointing upwards

• Message to operations center works

o GPS position of the person can be transmitted

7.3 Programming language

The programming language I have been using is Python. I haven't im-

plemented a real project with Python until now. That's why I see the

autonomous Search and Rescue drone as a perfect project to learn Py-

thon. Python is a programming language available for free. It is consid-

ered to be particularly easy to read, which is related to the given struc-

tured programming style. It is very easy to download and use additional

libraries. This makes Python a very powerful programming language.

Also, I would like to program the whole software object based. I have

never done this before. The big advantage of object-oriented program-

ming is the reusability of the software components. This makes the code

easier to read and more nicely structured, which increases the quality of the software in general.

Furthermore, the software can be visualized using the UML notation. (Python, 2019)

Image 9: Python Logo

10

7.4 Drone

Next, I had to decide which drone to buy as a base for the Search and Rescue drone. I had

the following technical requirements for the drone:

• Has a camera

• Interface for laptop

• Has GPS

• Can be used outdoors

• Minimum distance of one kilometer

• Not too expensive

I have decided to use the Parrot ANAFI. The following matrix justifies my decision:

Drone model Camera Interface for

laptop

GPS Out-

door

Dis-

tance

Price

DJI Mavic Pro 2

(Mavic Pro, 2019)
Yes Yes Yes Yes 5'000 m 1499.-

Ryze Tech Tello

(Tello, 2019)
Yes Yes No No 100 m 80.-

AML Pixhawk

(Pixhawk, 2019)
No Yes No No 100 m 195.-

Parrot ANAFI

(ANAFI, 2019)
Yes Yes Yes Yes 4'000 m 644.-

Table 1: Evaluation drone

The DJI Mavic Pro 2 has no Python interface and

is way too expensive. The Ryze Tech Tello has no

GPS and is also not suitable for outdoor use. The

Parrot ANAFI drone is just perfect. It is a bit expen-

sive pricewise, but it is still within my budget. More-

over, it has a Python interface. This is the program-

ming language I wanted to use for this project.

Plus, it has a range of four kilometers. And the best

is yet to come. There is a virtual environment for

the Parrot ANAFI drone. This means I can immedi-

ately test the code I write on a virtual drone. This

way, if I make a mistake, the real Parrot ANAFI

drone won't get hurt. The virtual environment is called Sphinx. It simulates the real firmware of

the drone, so it is identical to the real drone.

7.5 Libraries

Libraries are collections of functions and methods. They provide additional functions, so that

you don't have to write them yourself. There is no point in reinventing the wheel! I needed the

following libraries for the autonomous Search and Rescue drone:

7.5.1 Olympe

The Olympe library was developed by Parrot. Olympe is a programming interface between

Python and Parrot drones. It is required to connect to and control the drone via a remote Python

program. Olympe is used to send commands from the Search and Rescue system to the drone.

Image 10: Parrot ANAFI

11

However, Olympe is only the interface between the drone and Python, not between my Search

and Rescue system and the drone. I had to program this myself. (Olypme Documentation,

2019)

7.5.2 OpenCV

OpenCV is the abbreviation for Open Source Computer Vision Library. OpenCV is an open-

source computer vision and machine learning software library. I used OpenCV to implement

person recognition and distinguishing between a person seeking help and a person not seek-

ing help. (OpenCV, 2019)

7.5.3 NumPy

NumPy is the abbreviation for Numeric Python. NumPy is used to provide powerful data struc-

tures for efficient computation with large arrays and matrices. NumPy offers a huge number of

high-quality mathematical functions, such as minimization, regression, fourier transformations,

and more. (NumPy, 2019)

7.5.4 Pynput

This library allows to control and monitor various input devices. I use this library to read key-

board inputs. (pynput 1.4.5, 2019)

7.5.5 Geopy

Geopy is a library to make various calculations with GPS. I use it to calculate distances be-

tween two GPS coordinates. (GeoPy documentation, 2018)

7.5.6 Tkinter

Tkinter is a library to program a user interface with Python. I use this library for the notification

to the rescue center. { "tkinter", 2019}

7.6 Structure

I divided the Search and Rescue System into different components and files. This way I could

develop the components individually and finally merge them. In the chapter "Implementation"

I will go into the different components and explain how they work. The Search and Rescue

System is divided into the following components:

• Interface

• Navigation system

• Searchsystem

o Person recognition

o Distinction between persons seeking help and persons not seeking help

• Streaming

• Mission Abort System

12

These components were implemented in the following files:

• Adrone.py: Interface.

• Ai.py: Person recognition and discrimination

between people seeking help and people not seeking help.

• Mission.py: This is the main file from which the whole system is started.

• Navigation.py: Navigation system.

• Search.py: Search system.

• Streaming.py: Streaming the video of the drone.

• Settings.json: Miscellaneous settings.

• Mission.json: Definition of the mission area.

• Other files

7.7 GitLab

Anton Kiekels let me use his GitLab server for this project. Gitlab is a complete DevOps plat-

form. I upload my newly written code to GitLab. This way I always have an extra backup. GitLab

also automatically creates a versioning of the entire project. If I make a change that doesn't

work, I can easily revert to an earlier, working version. In addition, versioning also allows me

to track what I did and when. I can also work on the same project from different computers.

The latest version of the project is always on the GitLab server.

8 Implementation

In this chapter I explain how the system works, how I implemented it and what problems I

encountered. I won't explain every little detail, as I'm afraid it might get too technical and thus

too complicated.

8.1 Olympe, Sphinx, Linux

Parrot-Sphinx is a simulation software to test the written

code for Parrot drones. Sphinx simulates the firmware of a

Parrot drone on the computer in an isolated environment.

Gazebo is used as a base to simulate the physical and vis-

ual environment of the drone. I wrote the whole Search and

Rescue system using Sphinx. Every little change I made I

tested with Sphinx. This had the advantage that I didn't have

to test the code on the real drone. Otherwise, it would have

crashed into the ground quite often. This also saved me a

lot of time, as I didn't always have to go outside to test the

code I had written. (Sphinx, 2019)

Sphinx and Olympe unfortunately only run on the Linux op-

erating system. This means I had to dig out my old laptop

and reinstall it with Linux. Installing Olympe and Sphinx was

easy once I figured out how to do it. You see, at first, I wanted to run the firmware of the ANAFI

drone on my server. However, this was a bad idea as it would have made the whole thing way

too complicated. Also, there is no advantage of running the firmware on the server. That's why

I finally decided to install everything on the laptop.

Image 11:Sphinx

13

8.2 Interface

All the code for the interface is in the file called adrone.py. All commands that go to the drone

are sent through the interface. The interface is the only part of the system that can communi-

cate with the drone. An example of this: The navigation system calculates what direction is the

most efficient direction to fly. The drone must then align itself accordingly and fly an offset. The

navigation system passes this information to the interface, which then translates the infor-

mation into commands that can be executed by the drone.

8.3 Navigation system

The navigation system has the following tasks:

• A mission area can be defined via the navigation system.

• It calculates if the mission area is within a predefined distance from the start position.

• It calculates how many times the drone must fly back and forth until the entire mission

area has been flown over.

8.3.1 Define mission area

The mission area is defined in a json file. (JavaScript Object Notation, 2019)

It works by specifying a GPS coordinate. This GPS coordinate is one of the four corner points

of a field. Only rectangles can be flown over. If I would have solved this differently, I would

have had to invest more time, which I simply did not have. Once the GPS coordinate is defined,

the whole thing works like a coordinate system. The GPS coordinate is the center of the coor-

dinate system. So, you specify the distance on the X-axis and the Y-axis in meters. This can

be positive or negative. If an axis is negative, then the GPS coordinate is simply another corner.

The X-axis always points to the north. However, an angle can be specified. This angle is the

deviation of the X-axis to north. The angle can also be negative. Using this system, it's possible

to define a rectangle in every possible shape and direction. The content of the json file looks

like this:

{
 { "area".
 }, "coordinate": {
 "latitude": 48.879190525815225,
 "longitude": 2.368439865681848
 },
 "x": 100,
 "y": 120,
 "degrees": 0
 }
}

14

"Area" is the object that contains all the information. "Coordinate" is the coordinate with the

latitude and longitude. X and Y are the axes and "degrees" is the deviation from north in de-

grees. The settings described above look graphically as follows:

Figure 12: Mission area

8.3.2 Distance calculation of the mission area

Another part of the navigation system is to check if the defined mission area is within the range

of the drone. The maximum range of the drone can be defined in the settings (settings.json).

First, the current position of the drone is determined. Then with Geopy (GeoPy documentation,

2018) the distance of the two GPS coordinates is calculated. The calculations are different

depending on which corner point the specified GPS coordinate is. This is checked in the navi-

gation system. The corners of the mission area are named. Dc1 means "distance to corner 1",

which is the distance between the start position of the drone and the lower, left corner. The

corners are numbered in a clockwise direction. In the above example, the calculation looks like

this, where in this example dc2 is the distance between the corner point and the position of the

drone:

𝑑𝑐3 =
𝑥

sin (tan−1
𝑥
𝑑𝑐2

)

𝑑𝑐4 =
−1 × 𝑦

sin (tan−1 (
−1 × 𝑦
𝑑𝑐3

))

𝑑𝑐1 =
𝑥

sin (tan−1 (
𝑥
𝑑𝑐2

))

The greatest distance of the calculated distances must not exceed the maximum range of the

drone.

15

8.3.3 Overfly mission area

This part of the navigation system calculates which is the most efficient flight direction and at

what angle to north the drone must fly accordingly. The most efficient flight direction is the one

in the direction of the longer axis. So, in the above example, it is more efficient to fly along the

Y axis. Otherwise, the drone would have to stop more often to turn around. The drone is flying

15 meters above the ground. The camera is tilted down 45 degrees. Then the drone sees

about 50 meters of the ground. The whole thing can be represented graphically:

Figure 13: Fly over mission area

8.4 Searchsystem

The Search system is turned on once the drone reaches the search area and has aligned itself.

It is the part of the Search and Rescue System that searches for the actual people that need

to be rescued. The Search System has the following tasks:

• Switch on streaming and align camera

• Control airspeed

• Person recognition

• Distinguish between people seeking help and people not seeking help

• Flight maneuvers for found persons

• Message to operations center

8.4.1 Switch on streaming and align camera

Once the search area is reached, a command is sent to the drone to turn on the camera. The

image is then transmitted to the laptop. There, the image can be processed further. The drone's

camera is tilted downwards by 45 degrees. This is the best way to search for people. I have

tested this extensively. More about this is covered in the chapter Streaming.

16

8.4.2 Control airspeed

There is a command "moveBy" for the drone. The drone flies a given distance in one direction.

I wanted to use this command for flying over the search area. However, the speed can't be

controlled so easily. There is a command called "setAutonomous-FlightMaxHorizontalSpeed".

However, this was always ignored by the drone. I just couldn't figure out why. One forum talked

about a bug in the drone's firmware. If the speed is not specified, the drone just flies as fast as

possible. This way people can't be detected. The solution to this problem was to use the com-

mand "PCMD" to fly forward. The command is used to simulate the joystick of a controller. This

can regulate the speed by not pushing the joystick all the way forward. Now regulating the

speed was possible. But I could not control the distance flown by the drone, so I had to think

of a solution again.

It is possible to retrieve the speed of the drone. The speed in the north direction and south

direction is returned by the drone. With these values I can calculate the current speed and

direction of flight. Then I measure the time that passes while the drone is flying forward. This

allows me to calculate the distance traveled. This is done about a hundred times a second.

Then I just push the joystick forward until the desired distance is covered. The calculation looks

like this, where Vn is the speed towards north, Ve is the speed towards east and ∆𝑡 is the

elapsed time:

𝑆 = ∆𝑡 × √𝑉𝑛2 + 𝑉𝑒2

8.4.3 Person recognition

I implemented the person detection using OpenCV. I used the Haar feature-based cascade

object detection method for the person detection (Cascade Classifier, 2019) . In the theory

section, I have explained how this method works in more detail. I used this method because it

requires less power from the computer compared to other methods. Unfortunately, my laptop

doesn't have enough power to use a better and more accurate method.

In order to train person recognition, I had to obtain positive and negative images. Here, the

positive images contain the object I am trying to recognize. The negative images do not include

the object. To procure the images I wrote a small program that would fly the drone at 15 meters

and point the camera down at 45 degrees, stream the video from the drone to my laptop, and

finally save it. After that, my family and I took some videos of us walking back and forth on

different surfaces and waving our arms. From these videos, I was then able to export the indi-

vidual frames using another program. Using OpenCV's annotation tool, I was able to mark

each person on the frames. This process took many hours. When I was done, I had the positive

images. After that, I had to take care of the negative images. I repeated the whole procedure

with the difference that there were no people on the videos. Now, I also had the negative

pictures. (Cascade Classifier Training, 2019)

17

Figure 14: Person recognition

The actual training of the person recognition was not very difficult, I just had to generate some

files and make configurations. I tried to achieve an accuracy of about 98%, this goal was way

too ambitious. The server on which the AI was trained was calculating for over two weeks!

While the accuracy improved over time, each level took double the length of time to reach the

next level.

Finally, I gave up because I would not achieve the desired accuracy before the end of the

project. The final accuracy was about 50%, in every second image where there is a person,

they were detected. This is not very accurate, but it can be improved with time.

8.4.4 Distinguish between people seeking help

In order to distinguish a person to be rescued from a "normal" person, there must be a sign or

characteristic that can be recognized. Therefore, I assumed that a person to be rescued looks

up at the drone and waves his arms.

For this, the pose of the person needs to be recognized. After that, the arms can be checked

whether they are pointing upwards. For this, I used a pre-trained Deep Neural Network that

estimates the pose of a person. Training such a neural network myself went beyond the scope

of this project, the rest was straight forward. The neural network is based on OpenCV, so I only

had to download it and import it. After that, the picture of the person is passed to the neural

network and the position of important points of the human body is returned. A function then

checks the angle between the shoulders and arms. If this angle is greater than 140 degrees,

the arms are above the head and the person must be rescued (Tello Python, 2019) . It looks

like this:

18

Figure 15: Pose detection

8.4.5 Flight maneuver

If a person is detected, the drone must stop and check whether or not the person needs help.

This flight maneuver is performed by the search system. First, it verifies whether a person was

really detected. Since the accuracy of the person detection is not very accurate, a person may

be detected even though there isn't a person. Once the existence of a person is verified, the

pose of the person is checked. Then, depending on the pose, a message is sent to the control

center. Subsequently, the drone flies on and waits 10 seconds until it switches on the person

detection again, otherwise the same person will be detected again and again.

8.4.6 Message to operations center

The problem of messaging the control center was solved using a simple popup message. To

create the popup message, I used a library called Tkinter. The message contains the coordi-

nates of the person to be rescued. (Tkinter, 2019) . The message looks like this:

Figure 16: Message to control center

19

8.5 Streaming

The streaming part of the Search and Rescue system transmits the live video from the drone

to the laptop, it's then processed on the laptop. The problem is that the video must be received

from the drone while the drone is also performing flight maneuvers. Therefore, these two ac-

tivities have to be done simultaneously. In computer science the solution for this problem is

called "multithreading". The different activities are executed on different cores of the processor.

Thus, it is possible to receive and process the live video of the drone while the drone is exe-

cuting flight maneuvers.

Problems also arose because of the multithreading. The activities run parallel, but somehow,

they must be able to communicate with each other. The main system must be able to give the

streaming system the command to start detecting people. And the main system in turn has to

send a message to an operations center if a person is found. I solve this by setting so called

flags. One of these flags is called "rescue_person". This is set to "True" as soon as the stream-

ing system detects that a person needs to be rescued. The main system checks the value of

this flag all the time. As soon as the main system recognizes that the flag has been set, it can

initiate further actions. This allows the different systems to communicate with each other, de-

spite multithreading. (An Intro to Threading in Python, 2019)

8.6 Mission Abort System

As the name of the mission abort system implies, it is used to abort a mission. The abort of the

mission is initiated manually by pressing the A key on the keyboard, which stands for abort.

Once the mission abort is initiated, the current flight maneuver of the drone is immediately

interrupted. After that it returns to cruising altitude which is defined in the settings (set-

tings.json). As soon as it has reached this altitude, it flies independently to the starting point

and lands.

The mission abort system consists of two parts:

• Monitoring the keyboard inputs

• Flying the drone

8.6.1 Monitor keyboard inputs

Monitoring the keyboard inputs was very easy to implement. I use a library called "Pynput", it

does all the work for me:

#Starting Keyboard listener
self. listener = keyboard. Listener(
 on_press=self. abort_mission)
self. listener. start()

Self.abort_mission is the function that is executed when a key is pressed. This function checks

if the key that is pressed is the A key. If it is, the mission abort is triggered.

20

8.6.2 Threading problem

The mission abort system took over a week to implement. I was having problems and it took

me a lot of time to find the bug. I programmed the mission abort system before the streaming

system. Therefore, I had no experience with threading in Python at all. (An Intro to Threading

in Python, 2019) . Honestly, I didn't even know what it was. The symptoms of the problem were

that the drone seemed to fly around randomly when the mission abort system took control of

the drone. After all, it was supposed to be following orders from the mission abort system. After

a lot of tinkering, trial and error, I noticed that the main system kept sending commands to the

drone. Both systems were sending different commands to the drone at the same time.

I read up on the documentation for pynput (pynput 1.4.5, 2019) and found that the keyboard

input check was running on another thread in parallel with the rest. The function executed

when a key is pressed was also running on this parallel thread.

The solution was, as already described in the chapter "Streaming", to work with flags. This

means: When a mission abort is initiated, a flag called "mission_abort" is set to "True". This

flag is checked by the main program several times per second. If it is set, i.e. "True", the thread

on which the main system is running takes over the execution of the mission abort. This way,

the systems do not interfere with each other.

8.7 Problem

I programmed the whole Search and Rescue system based on Sphinx. (Sphinx, 2019) . Every

little change I made was tested in the simulation. When I was done with the system, it was time

to test the Search and Rescue system on the physical drone in the real world. On a cold Sun-

day afternoon, I went with a friend of mine to a nearby field. By the time we had the drone

ready to fly, our fingers were almost frozen.

I started the Search and Rescue system, and everything went smoothly at first. The system

was able to connect to the drone, the drone had a GPS signal and the mission area check

worked flawlessly. After various preparations, the drone took off successfully. It climbed to the

desired altitude and then just stopped, after two minutes I had to initiate the mission abort.

The strange thing is that the drone performed the mission smoothly in the simulation. Accord-

ing to the Sphinx and Olympe documentation, there should be no differences between the

simulated and physical drone. That's why I suspected that the firmware of the simulated drone

is not the same as the firmware of the physical drone. Since I programmed the system based

on the simulation, the Search and Rescue system only runs properly with the simulated drone.

The other systems, such as the navigation system or the person detection system still work

smoothly. The physical drone simply ignores some commands of the system.

Since I only finished the development a week before the project was due, I didn't have enough

time to fix the bug. Fixing the bug would take a lot of time, as I would have to test every change

outside on the physical drone. I am somewhat comforted by the realization that the fault is not

mine, but "Parrot's". The firmware should be the same on the physical and simulated drone!

21

9 Function test

For the functional test, I check the fulfillment of the basic objectives. The technical objectives

are the basis for the basic objectives. For example, if the mission area cannot be defined, how

should the mission area be flown over at all?

Since the Search and Rescue system with the physical drone did not work as planned, I dis-

tinguished between the simulated and the physical drone for the functional test:

Function Simulation Physical

Connection to the

drone

Person recognition

Autonomous flying

Distinguishing be-

tween people seek-

ing help

Notification to opera-

tions center

 Table 2: Function test

10 Troubleshooting

Since the Search and Rescue system didn't work as I had hoped on the physical drone, I set

out to fix the system after I turned in my project.

10.1 Code

I noticed that it was hard to debug the code. On the one hand, I had to test all changes outside

with the physical drone, on the other hand, my code was very nested. The original idea was to

have one class for all interactions with the drone. On paper this seemed like a very good idea,

but in practice it turned out to make debugging enormously more difficult. Such code is called

"ravioli code" in technical jargon. Finally, I decided to rewrite a large part of it, in a simplified

way! There should no longer be a class that is only there to communicate with the drone. This

way I didn't have to always struggle with the interface to the drone. This allowed me to signifi-

cantly reduce the amount of code, which made debugging easier. To avoid having to rewrite

everything, I created a new branch in "Github" and made the changes there:

22

Figure 17: Github Branches

10.2 Speed control

While troubleshooting with the physical drone, I noticed that controlling the speed as I had

solved it so far was a problem. I simulated the drone's remote joystick and set it to a specific

value. This allowed me to limit, but not regulate, the speed of the drone as it searched. Using

this technic, the drone accelerates until the forces of the propellers and air resistance balance

out. But if a disturbing factor comes along, such as wind, the drone speeds up and slows down

again depending on the strength of the wind. This results in bobbing, which makes it difficult

for the person detection system to locate the people.

I was able to fix this problem with a regulation loop. Using a regulation loop it's possible to

specify a certain speed that the drone should fly. However, I now had the problem that I could

only retrieve the current speed of the drone and control its speed using its inclination. It's not

possible to tell the drone it should fly a certain speed. Unfortunately, the value of the drone's

speed returned was delayed. This made it very difficult to regulate. Fortunately, I came up with

a good solution to this. The speed may well be delayed, but the acceleration is not. When the

drone is tilted forward, the acceleration changes without delay. This means, I could use the

acceleration to control it. If only it was possible to retrieve this data from the drone. I had to

find a solution by myself. For this I simply programmed a loop, which stored the current speed

of the drone and the current time in a variable at each run. Then I calculated the elapsed time

to the last run of the loop and calculated the change in velocity. This gave me the velocity

change in a given time, and that is the acceleration. The formula for this looks like this:

𝑎 =
∆𝑣

∆𝑡
=
𝑣2 − 𝑣1
𝑡1 − 𝑡2

With the acceleration, the speed can now be calculated for a given time. For example, it is

possible to determine the speed reached in two seconds. If this calculated speed is now below

the target speed, the simulated joystick can be used to accelerate even more. In reality, the

joystick would simply be pushed forward. If the calculated speed is now above the target speed,

the simulated joystick can be used to reduce the acceleration or even bring it into the negative.

This control is performed in a loop several times per second. The formula for this is as follows,

with t set to two seconds:

𝑉 = 𝑉0 + 𝑎 ∗ 𝑡

23

10.3 Parrot's failure

While troubleshooting, the drone sometimes worked and sometimes didn't. The drone's be-

havior was seemingly random. To get to the bottom of the problem in more detail, I put the

Search and Rescue software aside and wrote separate small programs. These were to test

the individual functions of the physical drone. I even tested some programs written by Parrot

themselves on the physical drone, with interesting results. All the little programs worked fine

on the simulated drone. But on the physical drone, none of the small programs worked. While

it was possible to connect to the drone. The drone was also able to take off on almost all of

them, but after that all further commands were ignored. Except the command PCMD, which

simulates the joystick. I was also able to determine the reason for it ignoring the other com-

mands. Namely, the problem is because most of the commands of the drone can only be

executed when it's in a certain state. For the "MoveTo" or "MoveBy" commands, the drone

must be in the "Hovering" state. Otherwise, the commands are simply ignored. This was the

case! When the drone is launched, it lifts off the ground and flies up about a meter. This puts

it in the "flying" state. But as soon as it finishes flying up, it should switch to the "hovering" state.

However, it simply doesn't do that. Even an explicit "hover" command does not put it into the

"hovering" state. In the simulation it works fine. Accordingly, the bug seems to be in the firm-

ware of the drone. Unfortunately, I don't have access to this firmware. The error is even visible

in the log:

Figure 18: Drone log

1. I'm sending a launch command to the drone.

2. The state of the drone is changing. The engines are accelerating.

3. The state of the drone changes. The drone takes off.

4. The state of the drone changes. The drone flies to about one meter.

5. The state of the drone does not change. The drone simply hovers in the air. (Here the

drone should change to the "Hover" state).

6. The MoveBy command is sent to the drone and ignored.

I have contacted Parrot after discovering this error of the drone. It could be that I am doing

something wrong. From my point of view, it is unlikely that I did something wrong, because the

example programs from Parrot also do not work. Unfortunately, I never got an answer.

24

11 Further development

With the advent of 5G technology, there are new opportunities to further develop the Search

and Rescue system. The biggest change I would like to implement would be to run the AI in a

datacenter. Normal laptops don't have enough power. This would also allow the AI to be con-

tinuously improved - based on the central architecture. That way, the respective users of the

system wouldn't have to download updates to always have the latest version of the AI. The

whole thing works like this:

Figure 19: Further development idea

The core system runs on a laptop or tablet. The human interacts with the tablet and provides

mission information to the system or monitors the mission. The laptop or tablet sends the com-

mands to the drone and the drone responds with telemetry and video data. This video data

can be transmitted to the data center via 5G. The bandwidth of 5G is sufficient for this purpose.

At the datacenter, an AI looks at the images and searches for people or checks the pose. If

the AI finds anything, that information is transmitted back to the laptop. Of course, 5G doesn't

exist everywhere in this world yet, especially not in developing countries. But it is also just a

further development idea.

App

Core
System

• Schnittstellen
• Navigationssystem
• Searchsystem
• Missionabortsystem
• Streamingsystem

Befehle

Telemetrie/Video

5G Server Farm

Video

Video

Data

Data

asdfasdf

25

12 Reflection

Despite some doubts and nerve-wracking phases, I can happily announce that I have man-

aged to combine the two technologies "Artificial Intelligence (AI)" and drone to program an

autonomous Search and Rescue drone. The Search and Rescue system itself works perfectly!

All goals were achieved. A detailed evaluation of the possible drones was carried out. The

software was written. I reviewed different products on the market and made a functional video.

The video shows how the system works and the process of a mission. Unfortunately, I could

not make a video of the physical drone as it did not fly as planned. I also did a functional test

to show that the drone works properly in the simulation, the functional test was done for the

physical and the simulated drone.

I had a lot of fun with this project. I love to tackle a new, demanding challenge. Without much

prior knowledge of Python, Person Recognition, Pose Recognition and Object Based Program-

ming, I blindly jumped into this project. I dealt with the mentioned topics intensively and mas-

tered them successfully.

I'm honestly surprised that the Search and Rescue system basically works. It's just very unfor-

tunate that the physical drone doesn't fly as I would like it to. What's especially frustrating is

that the fault is not mine. I should have used the DJI drone instead of the cheaper Parrot.

Although this has some disadvantages compared to the Parrot drone, the DJI platform is a lot

more robust.

Although this project was a lot of fun, it was also extremely stressful. Every evening since the

start of the in-depth work, I have been busy with it and done nothing else. Just acquiring the

skills to implement this project in the first place took up a lot of time. I did not count these

countless hours towards the actual work. Maybe I should have chosen a simpler project, but

then I wouldn't have learned as much. In the end, I think that all those sleepless nights were

worth it!

This project was certainly valuable for my future. All the new skills I have acquired during this

time will be put to good use in my future. It's not just about knowledge, but also perseverance,

patience and tackling problems constructively.

My goal remains to get the Search and Rescue system working on the physical drone as well.

Maybe in the future my work can really be used in real Search and Rescue missions to save

lives. Because that's what life is ultimately about, and that's my mission, to make the world a

better place.

13 Bibliography

An Intro to Threading in Python. (2019). (Real Python) Retrieved on November 24, 2019,

from https://realpython.com/intro-to-python-threading/

ANAFI. (2019). (Parrot) Retrieved on November 24, 2019, from

https://www.parrot.com/de/drohnen/anafi

Cascade Classifier. (2019). (OpenCV) Retrieved on November 24, 2019, from

https://docs.opencv.org/master/db/d28/tutorial_cascade_classifier.html

Cascade Classifier Training. (2019). (OpenCV) Retrieved on 11/24/2019, from

https://docs.opencv.org/3.4/dc/d88/tutorial_traincascade.html

COCO 2018 Keypoint Detection Task. (2018). (COCO) Retrieved on 11/24/2019 from

http://cocodataset.org/#keypoints-2018

26

These are the drones of the future. (2019). (Manpower) Retrieved on November 24, 2019,

from https://www.manpower.de/neuigkeiten/der-joblog/detail/trends-und-spielereien-

das-sind-die-drohnen-der-zukunft-563/

Deep learning based human pose estimation. (2018). (Learn OpenCV) Retrieved on

November 24, 2019, from https://www.learnopencv.com/deep-learning-based-human-

pose-estimation-using-opencv-cpp-python/

Drone Efficacy Study. (2018). (Eena) Retrieved on November 24, 2019, from

https://eena.org/document/eena-dji-programme-drone-efficacy-study/

Drone software that saves lives. (2018). (DroneSAR) Retrieved on November 24, 2019, from

https://www.dronesarpilot.com/

GeoPy documentation. (2018). (GeoPy) Retrieved on November 24, 2019, from

https://geopy.readthedocs.io/en/stable/

Human Psoe Evaluator Dataset. (2018). (VGG) Retrieved on 11/24/2019, from

http://www.robots.ox.ac.uk/~vgg/data/pose_evaluation/

JavaScript Object Notation. (2019). (Wikipedia) Retrieved on November 24, 2019, from

https://de.wikipedia.org/wiki/JavaScript_Object_Notation

Coastal Intelligence. (2019). (Wikipedia) Retrieved on November 24, 2019, from

https://de.wikipedia.org/wiki/K%C3%BCnstliche_Intelligenz

Matrice 200 Series. (2019). (DJI) Retrieved on 11/24/2019, from https://www.dji.com/matrice-

200-series

Mavic Pro. (2019). (DJI) Retrieved on November 24, 2019, from https://www.dji.com/mavic

MPII Human Pose Dataset. (2018). (MPI) Retrieved on 11/24/2019 from http://human-

pose.mpi-inf.mpg.de/

Nokia Drone Networks. (No date). (Nokia) Retrieved on November 24, 2019, from

https://www.dac.nokia.com/applications/nokia-drone-networks/

NumPy. (2019). (NumPy) Retrieved on November 24, 2019, from https://numpy.org/

Olypme Documentation. (2019). (Parrot) Retrieved on November 24, 2019, from

https://developer.parrot.com/docs/olympe/

OpenCV. (2019). (OpenCV) Retrieved on November 24, 2019, from https://opencv.org/

Pixhawk. (2019). (Pixhawk) Retrieved on November 24, 2019, from https://pixhawk.org/

Pose Estimation. (2017). (arxiv) Retrieved on November 24, 2019, from

https://arxiv.org/pdf/1611.08050.pdf

pynput 1.4.5 (2019). (pypi) Retrieved on 11/24/2019, from https://pypi.org/project/pynput/

Python. (2019). (Python) Retrieved on November 24, 2019, from https://www.python.org/

Sphinx. (2019). (Parrot) Retrieved on November 24, 2019, from

https://developer.parrot.com/docs/sphinx/whatissphinx.html

Tello. (2019). (Ryze) Retrieved on November 24, 2019, from

https://www.ryzerobotics.com/tello

Tello Python. (2019). (Github) Retrieved on November 24, 2019, from https://github.com/dji-

sdk/Tello-Python/tree/master/Tello_Video_With_Pose_Recognition

27

TkInter. (2019). (Python) Retrieved on November 24, 2019, from

https://wiki.python.org/moin/TkInter

14 Thanks

I would like to thank my family who supported me during these stressful times and let me film

them. A special thank goes to my learning partner Lars Schnitzler. He advised and helped me

well in many situations. I would also like to thank Joshua Häsler, who actively supported me in

testing the system. Another special thank you goes to my father Urs Rinderer; he did the tedi-

ous work of correcting my orthography.

【評語】190043

This project designs and implements a search and rescue

drone. It integrates the auto-pilot technology and computer

vision technology. However, the design was only tested in a

simulator and the real system cannot yet work in the real world.

It would be nice to see this system implemented and tested in

the real environment.

C:\Users\cutes\OneDrive\Documents\國際科展_2022\排版\190043-評語

	190043-封面
	190043-作者照片
	190043-本文
	1 Foreword
	2 Technology drone
	3 Search and Rescue drones
	3.1 Study on drones in rescue operations
	3.2 SAR drones on the market
	3.2.1 Nokia Drone Networks
	3.2.2 DroneSAR
	3.2.3 DJI - M200 Series

	4 Interviews
	4.1 Interview with Buchs Fire Department
	4.2 Interview with Woodville Fire Department

	5 Artificial intelligence
	5.1 Haar-cascade detection
	5.2 Deep learning based estimation of human pose
	5.2.1 Architecture

	6 Concept
	7 Planning
	7.1 Basic objectives
	7.2 Technical goals
	7.3 Programming language
	7.4 Drone
	7.5 Libraries
	7.5.1 Olympe
	7.5.2 OpenCV
	7.5.3 NumPy
	7.5.4 Pynput
	7.5.5 Geopy
	7.5.6 Tkinter

	7.6 Structure
	7.7 GitLab

	8 Implementation
	8.1 Olympe, Sphinx, Linux
	8.2 Interface
	8.3 Navigation system
	8.3.1 Define mission area
	8.3.2 Distance calculation of the mission area
	8.3.3 Overfly mission area

	8.4 Searchsystem
	8.4.1 Switch on streaming and align camera
	8.4.2 Control airspeed
	8.4.3 Person recognition
	8.4.4 Distinguish between people seeking help
	8.4.5 Flight maneuver
	8.4.6 Message to operations center

	8.5 Streaming
	8.6 Mission Abort System
	8.6.1 Monitor keyboard inputs
	8.6.2 Threading problem

	8.7 Problem

	9 Function test
	10 Troubleshooting
	10.1 Code
	10.2 Speed control
	10.3 Parrot's failure

	11 Further development
	12 Reflection
	13 Bibliography
	14 Thanks

	190043-評語

