搜尋結果
查詢 the共找到 1285筆。 如查無相關資訊,可至 進階搜尋 進行查詢
熱門關鍵字: the king 水果 豆漿 電腦
科展作品檢索

三個新的鋅的幾何異構物

在本實驗中,我們合成了三個新的鋅的幾何異構物:trans-facial-[Zn(dipica)₂]Cl2.CH3OH(dipica=dipicolylamine,C12H13N3,雙(2吡啶甲基)胺)trans-facial-[Zn(dien)2]Cl2(dien=diethylenetriamine,C4H14N3,二乙基三胺)及反式-[Zn(demn)2Cl2](demn=N,N’-dimethylethylenediamineC4H12N2,N,N'-二甲基乙二胺)。本實驗的特色皆在室溫下反應,採用擴散法培養晶體。trans-facial-[Zn(dipica)22]Cl2.CH3OH晶體為三斜晶系,晶格常數a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ=67.753(1)。;其空間群為P1,可信度R=0.025,Rw=0.0697。六配位的陽離子,其結構為扭曲八面體,兩個含氮三牙基(dipica)trans-facial配位,赤道面(ZnN(1)N(2)N(1A)N(2A))由兩個含吡啶環之氮(N(1)、N(1A))及兩個飽和胺之氮(N(2)、N(2A))所組成。主軸為兩個吡啶環之氮所組成。兩個含氮三牙基(dipica)與鋅的咬合角皆為84.5。。trans-facial-[Zn(dien)2]Cl2晶體為單斜晶系,晶格常數為a=11.3050(3)Å,b=10.9264(3)Å, c=12.6147(3)Å,β=92.884(1)。;其空間群為P21/c,可信度R=0.0191,Rw=0.0484。六配位的離子,其結構為扭曲八面體,兩個含氮三牙基(dien)與鋅的咬合角為156°、157°。反式-[Zn(dmen)2Cl2]晶體為單斜晶系,晶格常數 a=10.3397(4)Å,b=8.5916(4)Å,c=7.9774(3)Å,β=100.520(1)°;其空間群為C2/m,可信度R=0.0266,Rw=0.0686。其結構為八面體,鋅原子四個氮原子組成赤道面(ZnN(1)N(1A)N(1B)N(1C)),兩個氯原子位於此平面的兩側。兩個含氮雙牙基(dmen)與鋅的咬合角皆為83.0(1)Å。 In this study, we have synthesized three new geometrical isomers of zinc(II)complexes: trans-facial-bis(dipicolylamine)zinc(II)chloride-mathanol(1/2)(trans-fac-[Zn(dipica)2]Cl2.2CH3OH), trans-facial-bis(ethylenetriamine)zinc(II)chloride(trans-fac[Zn(dien)2]Cl2)and trans-bis(N, N'-dimethylethylenetriamine)zinc(II)chloride(trans-[Zn(dmen)2]Cl2). The crystals suitable for X-ray diffraction were obtained by slow diffusion of ether to solution of the products. There molecular strctures determined by X-ray diffraction. The complex trans-fac-[Zn(dipica)2]Cl2.2CH3OH crystallizes in the triclinic space group P 1 with a=8.8269(6)Å, b=8.9908(6)Å, c=10.0292(6)Å,α=76.715(1)。,β=81.232(1)。,γ= 67.753(1)。, for Z=1. The R value is 0.0259 for 3286 significant reflections. In the hexacoordinate cation, the two tridentate dipicolylamine ligands are trans-facially coordinated with two pyridine nitrogens and two secondary amine nitrogens situated on four positions in a basal plane(ZnN(1)N(2)N(1A)N(2A)). The remaining two pyridine nitrogens constitute the axis in a distorted octahedra structure. Colorless trans-fac-[Zn(dien)2]Cl2 crystallizes the monoclinic space group P21/c with a=11.3050(3)Å, b=10.9264(3)Å, c =12.6147(3)Å,β=92.884(1)。,and Z=1. The R value is 0.0191 for 3285 significant reflections. The zinc(II) atom has distorted octahedra coordination, in which the ligands are bound in a trans-facial configuration. Colorless trans-[Zn(dmen)2Cl2] crystallizes the monoclinic space group C2/m with a=10.3397(4)Å, b= 8.5916(4)Å, c=7.9774(3)Å,β=100.520(1)。, and Z=2. The R value is 0.0266 for 856 significant reflections. The zinc(II)atom of trans-[Zn(dmen)2Cl2]is six coordinate with 4 nitrogens of bidentate dmen forming a basal plane(ZnN(1)N(1B)N(1A)N(1C)),and two chlorines on the axial sites completing an octahedra structure.

> 更多

科展作品檢索

天然植物色素與人工染料敏化之太陽能電池

本實驗以吸附染料之二氧化鈦奈米結構電極層為承載基材的太陽能電池為研究對象,旨在增進其光電轉換效率,促使染料有效地吸收光能後造成電荷分離,再經由二氧化鈦傳導帶向外傳出而形成電流,即所謂染料敏化太陽能電池。實驗主軸共分三:1、合成染料N3:觀察吸附度與浸泡時間之關係,發現在18~20 小時電池有最佳吸附;改變電解液濃度,求得最佳電解液濃度範圍;酸化二氧化鈦極板。2、天然植物色素:改變溶劑,得出高極性之丙酮對電池最佳;酸、鹼化植物色素;觀察電池隨著光照時間增加,性質趨於穩定。3、混合色素與染料:此實驗旨在印證不同吸能範圍之染料在極板混合浸泡後,電池吸能帶是否有疊加、擴充的效果,並觀察分開浸泡與混合色素一起浸泡之不同效應,量測IPCE 以玆比較。實驗結果可知,確實對於電池吸光範圍有所增加,且分開浸泡之效果較好。This experiment is mainly about the phtosensitization of Ti02 solar cell, aiming at improving the energy conversion efficiency, promoting the electric charge to separate from TiO2 and spread out through after the dye absorbs light. That is so-called dye-sensitized solar cell. The experiment mainly divides into three parts: 1. Ruthenium(II): Observing the connection between adsorption and dipped-time, find out that solar cell has best to adsorb in 18 to 20 hours; change the concentration of electrolyte; acidification TiO2. 2. Photosynthetic pigments: Change solvent, and get the conclusion that pigment has better adsorption in high polar solvents such as acetone; acidification/basification pigments; observe the changing of energy conversion efficiency while the illumination time increases. 3. Mixed the dye and pigment: This experiment is aim at proofing that the absorption spectrum of soaked-TiO2 may mix after dipped in different dye and pigment. Furthermore, we compares the differences between TiO2 dipped in one mix solution and dipped in several solutions separately, measure its IPCE. According to the experiment, the spectrum of soaked-TiO2 is certainly larger, and dipping in solution separately has better effect to the battery.

> 更多

科展作品檢索

奈米溶膠製成蓮花效應及應用

Lotus effect(蓮花效應)是蓮葉表面化學組成(wax)與物理組成(微纖維結構)兩者所造成。本研究是以模擬Lotus effect,採用Sol-Gel 製成,將氟化矽聚合為奈米膠體。實驗結果發現,以異丙醇為溶劑,再依序加入氟化矽、硝酸以製成的Sol-Gel,將其塗覆於玻璃表面,可得到最高的接觸角(114.71°),且少量的氟化矽可製成大量的成品,已具有實用價值又兼顧成本的優點,最重要的是,本研究克服了目前Sol-Gel 製程與應用的四大難題(機械強度、與基材接著問題、透明度、溶膠凝固問題),可說是一大創舉。利用所研發出來的奈米溶膠,我們能成功地將Sol-Gel 附著於布料、玻璃、釉表面、粉體,也能成功地研發出具有自潔透氣的布料、救生衣、雪衣、棉被及自潔功能的玻璃、磁磚與市面上尚未研發出的防水粉體(接觸角>140°),因此我們研發出的Sol-Gel 應用甚廣,有無限的發展潛力。Chemical composition (wax) and physical characteristics (microstructure) of lotus leaves are both responsible of the so call Lotus Effect. In this study we intend to demonstrate louts effect by applying Sol-Gel method to polymerize fluorosilane into nano-scale colloid. Our experimental results shown that the sol-gel made based on isopropanol solvent with fluorosilane and nitric acid added in order, when coated on glass plate, can achieve highest (liquid-surface) contact angle of 114.7 degrees. In addition, only small quantity of fluorosilane is sufficient to produce large amount of product, making this method feasible and cost-effective. More importantly, this procedure overcome the four major difficulty of sol-gel processing and application, namely mechanical toughness, adhesion with substrate, transparency, and consolidation. Using the nano-sol-gel developed in this study, we have successfully coated the sol-gel onto fabric, glass, ceramic grazing surface, and powder, which allow one to make self-cleaning breathable clothes, life jacket, snow cloth, futon and self-cleaning glass and tiles, as well as water-proof powder (contact angle > 140 degrees) which is brand new on market. We therefore believe that there is a great potential for the application of sol-gel developed in this study.

> 更多

科展作品檢索

自由基VS抗氧化物

自由基會產生在神經系統、免疫系統、血液循環系統等等,進而影響到人體各器官的運作,甚至於近年來許多醫生學者提出自由基病理:自由基是百病之源。本次實驗筆者挑選葡萄子、維生素C、綠茶來抑制清氧自由基(OH.)所採用的方法是將10%雙氧水製入注射筒並加亞鐵離子催化,,使其與抗氧化物反應,由於雙氧水分解會產生氫氣自由基與氧氣,因此筆者用倍率放大器(OPA)放大生成氧氣造成的電壓,並用Data Studio測量記錄,最後可由氧氣體積對電壓的趨勢圖看出抑制氫氣自由基的效果;Free radicals will be produced in our nerves system blood circulation immunization system etc. and they able to influene the operaion for our organs many medical scholars have even come up with "free radical pathology"-free radicals are sourse of all he diseases in recent years.In this study, I chose rape stone vitaminC and green tea to restrain hydroxide radicals(OH.) Here is summary of the experimental process. First,I put 10%hydrogen peroxide into an injector and then added ferrous ion to hydrogen peroxide to catalyze it. Second I let it reaact with the sample. Because hydrogen peroxide can produce hydroxide radicals and oxygen, I used the mutiplier(OPA) to amplify the pressure caused with the prducion of oxygen, measuring and recording resuls by the software"Data Studio"Finally, we can tell which antioxidant is more effective in restraining hydrode radicals from volume-voltage gragh.

> 更多

科展作品檢索

台灣珍稀水生蕨類槐葉蘋形態、生活史及生存環境的研究

槐葉蘋(Salvinia natnas)生長於台灣低海拔淡水濕地,目前已列為嚴重瀕臨滅絕的台灣原生物種,為不具有根的植物,是世界珍稀的漂浮型水生蕨類。本研究是探討槐葉蘋形態、生活史及生存環境因子,實驗發現可藉由成熟浮水葉外部形態特徵來區別槐葉蘋與外來種之人厭槐葉蘋(Salvinia molesta);槐葉蘋成熟浮水葉呈橢圓形,葉上毛被物是叢生且分岔,人厭槐葉蘋成熟浮水葉呈雙耳形,葉上毛被物則像打蛋器。當兩物種共存於同一個環境空間時,人厭槐葉蘋以平均11.6 cm2/week 的生長率將槐葉蘋完全取而代之,顯示人厭槐葉蘋之入侵對槐葉蘋生存影響之深遠。經由兩年的槐葉蘋物候觀察,發現3~11 月為抽芽成長期、3~12 月為成熟繁殖期、12 月~隔年2 月為冬枯期及孢子囊果出現期,12 月~隔年5 月為孢子囊果成熟開裂期。其繁衍策略可分為無性繁殖(頂芽及側芽生長)及有性生殖(異配子體交配)。探討環境因子(光照度、氣溫、濕度、水質、水溫、pH 值)分析結果,適合槐葉蘋生存環境的條件為(1)陽光間接照射(半遮蔭,遮蔭度58.33%)、(2)乾淨未受污染的水質(pH 6.5~8)、(3)通風性良好。生長環境符合以上條件即可達到移地保育的目的。Salvinia natans, a floating fern without roots, grows in low elevation fresh water wetlands of Taiwan, and is a critically endangered precious Taiwanese native species. This research investigates the life form, life history, and living environment of Salvinia natans. Our experiments show that we can differentiate Salvinia natans and Salvinia molesta, two easily mixed up species. The shape of matured floating leaves of Salvinia natans is elliptical and smaller, while it is twin-ear shape and larger for Salvinia molesta. Also, they can be distinguished by their leaf hairs. The hairs of Salvinia natans are tufted and separated at the tips, while the hairs of Salvinia molesta form an ‘eggbeater’ shape at the tip. When these two species lived together, Salvinia molesta grew in a rate of 11.6 cm2/week and will replace all Salvinia natans eventually. This shows the profound impact of invasion of Salvinia molesta. From the data of 2-year phenology observation, we concluded that budding took place from Mar. to Nov., growing and reproducing from Mar. to Dec., decaying from Dec. to Feb. (sporocarps were born in this period), and sporocarps matured from Dec. to May. There are two reproduction strategies: sexual reproduction (intergametophytic mating), and asexual propagation (by terminal and axillary growth). After investigating the environment factors (illuminance, air temperature, water temperature, humidity, pH), we found that ex situ conservation for Salvinia natans requires 1) indirect sunshine, 2) unpolluted water (pH 6.5 ~8), and 3) good ventilation.

> 更多

科學研習月刊

58-01

NO.58-01 2019 FEB | 科學研習期刊目錄 本期專題 運用科技的物理教學 智慧型科技與行動學習: 以手機APP為例 | 賈至達 綠能數位與實作教材 之發展與運用 | 盧玉玲 蠟燭燃燒實驗的IoT 之旅 | 李柏翰 、江政龍、蘇萬生 智慧型手機立體影像STEAM實作教材 | 洪連輝、張益嘉 運用Arduino探究視覺暫留 | 陸健榮、鄭依佩 科學探究隨手做:手機感應器的物理原理與教學上的應用 | 盧政良 教學現場 動手玩科技:射箭Robot自己做 | 施皇羽、許弘叡 量子力學之美:電腦叢集計算在附中 | 李柏翰 科學新知 淺談「智慧電網」 | 蔡振明 特約專欄 變色龍 | 游森棚 帶得走的STEAM課程設計:古機械鐘創意課程 | 黃琴扉 趣讀科普,昇華閱讀,活化STEM腦 | 劉淑雯 科普活動報導 看得獎影片 學有趣科學 | 李名揚 科教館GO好玩 電漿球演示融入科學劇的情節歷程--以「電漿球」演示為例 | 陳香微 總召集人的話 本刊自本期起改為雙月刊,於「臺灣網路科教館」網址刊登,文章方向將更緊扣STEAM教育與國中小物理、化學、生物、地科、科技、數學六大領域或分科。除將於「本期專題」和「教學現場」單元刊登和12年國教課程與教學相關文章外,亦結合科教館「科普傳播中心」做更多元化的分享與傳播。物理科召集人是國立彰化師範大學物理學系吳仲卿教授,「本期專題」推出「運用科技的物理教學」專題。 「本期專題」共有六篇文章:〈智慧型科技與行動學習:以手機APP為例〉一文以智慧型手機的APP為主軸,論述智慧型科技在「行動學習」的應用,以及在科學學習的幾個面向。〈綠能數位與實作教材之發展與運用〉一文分享作者研究室所研發的「綠色能源」數位教材,教材係整合情境式數位學習與實作探究而成,以風力發電為主題。〈蠟燭燃燒實驗的IoT之旅〉一文帶領讀者利用國中理化課程單元--密閉容器蠟燭燃燒實驗,結合國家晶片系統設計中心開發的MorSensor測定晶片,設計一套創新的實驗流程。〈智慧型手機立體影像STEAM實作教材〉一文作者分享其整合STEAM教育精神,所開發出主題為「立體視覺與虛擬實境」的一套光學領域課程與教材。〈運用Arduino探究視覺暫留〉一文分享如何運用新科技--開源微控制器,針對視覺暫留現象進行定量的探究與實作,同時訓練學生測量與分析以及程式與電路等跨領域的基本素養。〈科學探究隨手做:手機感應器的物理原理與教學上的應用〉一文分享利用手機進行數位量測教學的的經驗與建議。 「教學現場」刊登兩篇文章:〈動手玩科技:射箭Robot自己做〉一文分享在國小利用木工課程搭配microbit的程式設計,進行「射箭Robot」的設計經驗。〈量子力學之美:電腦叢集計算在附中〉一文分享在高中開授多元選修課程「量子力學之美,電腦叢集計算」的經驗與成果。 「科學新知」刊登〈淺談「智慧電網」〉一文,介紹智慧電網的三大要件:智慧電表,資訊、通信與自動化系統,和儲能系統。 「特約專欄」刊登三篇文章:〈變色龍〉拋出兩隻不同顏色的變色龍相遇會同時變成第三種顏色的問題。〈帶得走的STEAM課程設計:古機械鐘創意課程〉一文分享跨校、跨領域、跨單位整合,創建一系列古機械教具與教材教法的經驗。〈趣讀科普,昇華閱讀,活化STEM腦〉一文從STEM教育觀點介紹四種類型的科普書籍。 「科普活動報導」刊登〈看得獎影片 學有趣科學〉一文,報導已有公播版的「永不妥協-實驗室的挑戰故事」系列影片。 「科教館GO好玩」刊登《電漿球演示融入科學劇情節歷程探討—以「電漿球」的演示為例》一文,分享科教館科學劇「今天我們去哪兒」,將展品「電漿球」的演示融入劇情中,彰顯科學與藝術跨領域整合的效果與心得。 總召編輯委員 - 李隆盛 關於本刊 出版單位:國立臺灣科學教育館 發行人:陳雪玉 總召集人:李隆盛 編輯委員: 物理科吳仲卿/陳耀榮/李柏翰/盧玉玲 | 化學科古建國/許良榮/王伯昌/林如章/周金城 | 生物科王美芬/蕭世輝/陳建志/郭淑妙 | 地球科學許民陽/王郁軒/李文禮 科技科張玉山/汪殿杰/林育沖/趙珩宇 | 數學科李源順/鄧家駿/溫世展/張宮明 | 跨領域學科李名揚/連信仲 | 特約專欄 游森棚/黃琴扉/劉淑雯 策劃:曾聰邦 主編:錢康偉 本月專題特約主編:吳仲卿 編輯:吳郡怡 網頁設計編輯:施曉恬/陳璽君 投稿規範請來信詢問:article@mail.ntsec.gov.tw

> 更多

科展作品檢索

動力機械(內燃機)模型引擎之研究

最古老之動力機械為蒸氣引擎,在早期蒸氣火車發電機皆由蒸氣引擎發展而來,本研究即利用最古老之蒸氣引擎(俗稱飛龍引擎)之製作,以探討內燃機之基本理論以作為模型引擎設計之基礎。在飛龍引擎製作中,歷經引擎無法轉動之痛苦,並極力找尋一百年前發明蒸氣引擎之同樣思考,最後找尋到引擎啟動之合適尺寸,再用其尺寸延伸做實驗,以發展其理論,最後發現引擎設計之重要變數如管長﹑火焰﹑本身重量均為設計中重要因數,最後用正式機械設計方式完成第四代引擎亦正式運轉,可見本蒸氣引擎之設計基礎具有相當實用之基礎。The oldest locomotive engine was the steam engine. All early steam locomotives were developed from the steam engine (Heron engine) and this research project uses the Heron engine to explore the fundamental theories behind the internal combustion engine as a model for basic engine design. During the production stage of the Heron model, there were difficulties with engine rotation, and so efforts were made to find the same thought processes involved in producing the steam engine 100 years ago. The dimension appropriate for moving the engine was first found, and then the idea was extended with experimentation of the size in order to develop the theory of engine design. In the end, the length of the steam hose, the strength of flame, and the actual weight of engine were all found to be important factors of design. Finally, the fourth generation Heron engine was able to rotate properly using the proper engine design method, so it can be seen that the fundamentals of steam engine design has quite a practical engine design basis.

> 更多

科展作品檢索

廢紙漿發酵產氫之探究

氫氣在燃燒後只會產生水而不產生溫室氣體之二氧化碳,可謂一種潔淨能源。 生質能源是屬於碳中性(Carbon neutral)型之利用方式,因此本研究著眼於如何建構一個操作簡便的共代謝系統,將生質料源從微生物之發酵反應中釋放氫氣出來。 實驗的主要方法是利用好氧性的Bacillus thermoamylovorans 與厭氧性的Clostridium butyricum 共培養分解廢紙漿以生產氫氣。廢紙漿是混合的基質,內富含纖維素、並含一些油墨及少許雜質。利用Bacillus thermoamylovorans 是好氧菌,同時也能將廢紙漿中的纖維素轉換成還原醣的特性,將原本有氧的環境轉換成絕對厭氧的環境,並將廢紙漿中的纖維素轉化成Clostridium butyricum 可以利用的還原醣。如此一來,原本不利於Clostridium butyricum 生長的環境,卻能透過簡單的共培養方式創造出有利於Clostridium butyricum 生長的環境並產生氫氣。除此之外,我們也對不同碳源、不同的植菌量、不同的氧氣量,比較其產氫能力差異,發現增加氧氣量可以提升最後的產氫量大約2.7 倍。 ;Our major goal is to develop a cost-effective biohydrogen production system by the co-culturing of Bacillus thermoamylovorans and Clostridium butyricum. The aerobic Bacillus thermoamylovorans will consume oxygen and converse waste paper pulp into reductant-sugar and the anaerobic Clostridium butyricum will generate hydrogen after oxygen is consumed. With the increase of aeration, the aerobic Bacillus thermoamylovorans growsappropriately leading to more biohydrogen production. However, in enhanced aeration condition, the Bacillus thermoamylovorans will consume sugars that can offer for the Clostridium butyricum. So we can conclude that the control of oxygen is the key point for the system to operate.

> 更多

科展作品檢索

放射毛黴-豆腐乳最佳菌種之研究

本文發現發放射毛黴( Actinomucor elegans)為製豆腐乳之最佳菌種。實驗包括形態、生理及抱子萌芽之生理。在靜態合成毛做培養液( Still synthetic Mucor Solution )中放射毛黴佳長以第 5 天之乾重量最高,孢子形成與發育在快速生長期之末。最宜生長之生理條件為憑度 30oC 酸鹼度7,相對濕度 92 % ( 30oC 時),振盪培養。更進一步在不同溫度,酸鹼度、濕度、孢子濃度、基本餐養物、氮源、乙醇蒸氣、二氧化碳濃度下加以探討孢子萌芽生理,結果顯示放射毛黴孢子萌芽最宜溫度為 30oC、釀鹼度7,相對濕度 92%,孢子萌芽率因孢子濃度增加而減少,最有效刺激孢子萌芽之基本營養物需要葡萄糖、硝酸鹽和磷酸二氫鹽三種混合物,數種供試的氮源以酵母抽取物刺激孢子萌芽最有效,乙醇蒸氣 1 %或 l %以上抱子萌芽即受仰制,大氣中的CO2濃度已足夠孢子萌芽之需,太高或太低濃度反而有害,孢子熱死點測得為55oC。

> 更多

科展作品檢索

酒精對斑馬魚胚胎眼睛發育的影響

長期以來,臨床研究發現會影響人類胚胎的正常發育,造成胚胎畸形、成長遲緩等現象,稱為胎兒酒精症候群(fetal alcohol syndrome),但是其病理機制仍不清楚。最近的研究發現斑馬魚胚胎對於酒精有非常靈敏的反應,出現明顯的發育異常現象,例如心臟膨大、眼睛縮小、骨頭變形等現象,與人類胎兒酒精症候群相似,顯示斑馬魚非常適合作為研究胎兒酒精症候群的模式動物。在本實驗中,我們針對酒精影響視網膜神經發育的現象進行探討,並且也利用基因晶片篩選出胚胎發育時期受酒精影的的基因轉錄子,藉以了解酒雞造成胚胎畸形發育的機制。實驗結果顯示在眼睛發育過程中,1.5% 酒精浸泡會抑制視網膜神經細胞的分層(Lamination),而進一步利用RNA定位雜交的方式以眼睛的標示基因rx1、pax6b、six3b、alpha-crystallin、rho、neuroD、huC觀察他們的表現,發現酒精會減少視網膜神經細胞的分化,造成眼睛發育的缺陷。在基因晶片的分析中,我們發現酒精處理會抑制許多控制眼睛發育的基因調控子的表現,包括了crx、rybp、irx4a、optx2、rx1、brn3b1 與 vsx1等,此外約有16%的眼睛相關基因液受到酒精的抑制,遠高於其他基因受抑制的比例,顯示眼睛是酒精傷害最嚴重的區域之一。我們從實驗結果得知酒精並未對胚胎發育初期眼睛的發育造成明顯的影響,但是隨後由於控制細胞分化的幾個重要基因受到酒精抑制作用,造成視網膜神經細胞的分化停止,引起眼睛的異常發育的情況。It was known that prenatal alcohol exposure may cause serious birth defects and developmental disabilities. The molecular mechanism of this fetal alcohol syndrome still remains unclear. Here we used zebrafish embryo as a model to investigate the toxic effect of alcohol in retinal development. The histochemical analysis revealed that the cell lamination was prohibited by alcohol incubation. It appears that the retinal cell differentiation was inhibited. As revealed by whole mount RNA in situ hybridization, it appears that the transcription of a number of retinal-related regulatory genes, including rx1, pax6b, six3b, alpha-crystallin, rho, neuroD and huC, were all inhibited in zebrafish embryo by alcohol exposure. The transcriptional profile of alcohol-exposed embryos was also compared with normal embryos by microarray analysis at different stages. It appears that 16% of retinal-related genes were all repressed by 1.5% alcohol incubation, including several retina-related transcriptional factors, including crx, rybp, irx4a, optx2, rx1, brn3b1and vsx1. Our results suggest that alcohol did not interfere the early development of the eye, but has inhibited the final cell differentiation of retina cells. This study helps us understand the molecular mechanism of alcohol-mediated retinal malformation.

> 更多

科展作品檢索

調幅超聲波解調高指向可聽音之研究

可聽聲有向四周擴散繞射特性,而超聲波具有指向性,改以超聲波載送可聽音訊號後,其載波與旁頻帶均在超聲波範圍,實驗中人耳卻可聽到高度指向性聲音,且調幅解調後的可聽聲衰減率比純超聲波來的低。那為什麼超聲波會解調可聽音?我們以非線性的數學轉換概念,成功以數學推導解釋實驗中所聽到的可聽聲,是由旁頻經由非線性轉換而來的。為了證實空氣中的超聲波有非線性現象,以發射40KHz單頻訊號,除了接收到40KHz訊號外還可接收80KHz訊號,而80KHz訊號振幅,會隨著發射強度而遞增,也會隨著傳輸距離增加至穩定狀態,這所我們從文獻中的非線性理論所吻合。接下來進行調幅超聲波實驗,我們經理論計算旁頻帶強度為頻率響應與調變率乘積的一半,而解調可聽聲的強度為調變率、頻率響應與非線性係數三者乘積,我們也由實驗數據證實理論計算結果,在實驗中,換能器在40KHz有最佳的頻率響應,其非線性係數與所載送可聽聲頻率高低約略成正相關,並且與換能器距離遞增而越遠而增加。此外在提高高指向可聽音輸出功率方面,除製作專屬的放大器、運用方波取代正弦波來載波、配合陣列換能器輸出;在改善音質方面,利用等化器調整訊源頻譜分佈,降低低頻振幅,增強高頻振幅,讓各頻率的原始訊號都能有適當的調變,達到最佳音質。The audible sound has the characteristics of spreading and diffracting. And ultrasonic is directive. We modulate sound into ultrasonic signal. The carrier and sideband are ultrasonic frequency bands. But in the experiment, human can hear highly directive sound. In terms of attenuation rate, AM demodulation sound is lower than pure ultrasonic wave. Why can human hear the directive sound? By using the nonlinear mathematical transform, we managed to explain the audible sound which is transformed from sideband with nonlinear effect in the experiment. In order to confirm that nonlinear phenomena in the air ultrasonic, we launch 40KHz single tone ultrasonic signal. Besides the 40KHz signal, we also received 80KHz signal. The amplitude of 80KHz signal will increase with the emission intensity, and also with the transmission distance to increase its stability. These are consistent with nonlinear theory in the literature. Next we began AM ultrasonic experiment. We calculated the sideband intensity that is the product of frequency response and modulation index. The demodulation sound intensity is the product of modulation index, frequency response, and nonlinear coefficient. We also proved the calculated consequence through the experiment. In the experiment, the ultrasonic transducer has a best frequency response in 40KHz. The nonlinear coefficient has positive correlation with the modulation frequency, and increases transmission distance. To boost the power of directive audible sound, we made an amplifier, using square wave to replace sine wave of carrier, and in conjunction with array transducer output. To improve the sound quality, We use the spectrum-Equalizer to adjust the frequency distribution of the origin signal. The EQ reduces the low-frequency amplitude, and boost high-frequency amplitude, which enables every frequency of the original signal to be properly modulated, achieving the best sound quality.

> 更多

科展作品檢索

很錳的顏色

高二上學期化學第一章,就討論到電子組態及原子光譜,雖然課本上有美麗的光譜插圖,但是觀念還是覺得十分抽象。所以老師為了提高我們學習的興趣,在實驗課中教我們自製簡易分光器,實際去觀賞各種光源及有色溶液的光譜,觀賞過程我們發現下列的問題:(1)為何一般離子是帶狀光譜,而MnO4- 光譜卻像線光譜?(2)MnO4- (深紫)和Mn2+(幾近無色),兩者顏色差異很大。是否與Mn 離子是否單獨存在有關係?(3)而另外CrO42- (黃)、Cr2O72- (橙)和Cr3+(深藍色),三者顏色差異,是否與MnO4- 和Mn2+原因類似?為了尋找這些答案,於是開始了這個題目研究的過程。這期間我們花了很多時間與方法,嘗試將肉眼觀察到的影像,在自設的簡單暗房中,將光柵卡在數位相機的鏡頭前,以腳架或翻拍架拍攝下來。另外我們也應用到高三上學期平衡常數測定實驗中比色法的觀念,以及物理學上單狹縫繞射的觀念,使課本中的理論與實驗研究相互結合!最後我們藉分光光譜儀測定各有色溶液的可見光吸收光譜,再去定量分析這些有色溶液的顏色深淺,並查閱相關的文獻資料。最後發現MnO4-應該是一種電荷傳遞的遷移,所引起特別深顏色的現象。 至於CrO42- 、Cr2O72- 和Cr3+三者顏色比較上是否和MnO4- 和Mn2+一樣的情形?我們推測應該也是如此!初見Cr3+有很深的顏色時,的確嚇了一跳,不過最後我們還是從它們的可見光吸收光譜中發現: CrO42- 、Cr2O72- 在λmax 的吸光度比Cr3+還要大!但是為何肉眼觀察到的Cr3+顏色會比較深?那是因為我們視覺上對藍綠色比較敏感的緣故!請參考表一。 We have discussed some electronic configurations and atomic spectrums in chemistry class. Although there were a few beautiful spectrums in textbook , but it’s difficult to understand. So we made a simple spectroscope by ourselves to observe spectrums of different light source and color solution . After some observation we have found some problems below : (1)Why the spectrum of color solution is band spectrum , but the spectrum of permanganate ion (MnO4- ) like line spectrum? (2)MnO4- (deep purple)and Mn2+(pink), their color are different very much. Is it because of the lone existence and binding with oxygen atom of manganese ion? (3)Additionally CrO42- (yellow)、Cr2O72- (orange)、Cr3+(deep blue),Are their color’s difference same as MnO4- and Mn2+? In order to solve it , we started to do the reasrech. We tested different methods much time to record . Finally , We found a good method . That’s placed a grating in front of the digital camera len to take single slit diffraction spectrum pictures in the dark space. Additionally we used spectrophotometer to measure the visible light absorption spectrum. We compared and matched with single slit diffraction spectrums and visible light absorption spectrums. Then we found the intense color of MnO4- due to charge transfer in reference book. How about color’s difference between CrO42- 、Cr2O72- 、Cr3+group and MnO4、 Mn2+ group? We guess they had the same result . We can find the λmax of CrO42- 、Cr2O72- is larger than Cr3+ from the absorption spectrum. But the observation from naked eyes was inverse . This is owing to our vision is more sensitive to blue color. Refer Table 1.

> 更多