Starting from the problem in AMC competition of Australia, we try to find out the locus and its length when a point in a regular polygon rolls in a circle. The result is that the locus has a wonderful and regular cycle.Next, we discuss the regularity of the cycle when a regular polygon(n sides) rolls in another regular polygon. Furthermore,we discuss the the equation of the locus by changing the radius and the angle of rolling. we find out the argument function of the locus of a point inside when a a regular polygon(n sides)rolls in another regular polygon (m sides): , Aj is the summits of the regular polygon(m sides), Bjcorresponds Aj when a point inside the regular polygon (n sides) rolls, ) And then, we do some moving simulation with some computer math software, such as Cabri Geometry、Mupad, etc. We discuss the regularity of the locus and its equation of a point inside when some special cycloids, like asteroids, cardioids, etc, roll in a certain condition. Moreover, with the result of research 2, we create the “plate" and apply for a patent on it. We hope to study math by playing games. 從澳洲AMC 競賽題出發,嘗試探討一正n 邊形中的一點在單位圓內滾動軌跡及其軌跡長度,發現該軌跡均會產生奇妙的循環規律。 接下來,推廣探討正n 邊形在其他正多邊形中滾動時循環的規律,並利用旋轉半徑及角度之間的變化深入探討其滾動軌跡方程式,發現正n 邊形繞正m 邊形滾動時其內部一點軌跡參數式為,其中, Aj 為 正m 邊形之各頂點、Bj 為正n 邊形中內部一點旋轉時對應 Aj 之點,。 進一步想嘗試使用數學電腦軟體如:Cabri Geometry、Mupad 等對以上研究去做一些動態模擬,並再探討一些特殊擺線如:星狀線、心臟線…等,在條件下相切滾動時,圖中某一點的軌跡規律性及其方程式。另外,應用研究二中的結果,創造出寓數學於遊戲的「圖形板」,並申請了新型專利。
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」