k(2αβ ,α2 ? β2,α2 + β2 )是大家熟悉畢氏定理的通式解,且一般書籍的証明大都採用代數的手法證明。以國中生而言,上述的代數方對國中生來說不夠直接且較無推展的實用性。因此幾何觀點出發發展另一種思考方式,利用角平線的性質給予畢氏定理比例解另一種全新的詮釋,並賦予比例解中的參數α 、β 在幾何的意義。在推理的過程中,我們得到一個相當有用的對應關係:一個有理數對應到一個直角三角形、兩個有理數對應到海倫三角形,再將此對應關係運用到各種幾何圖形上面,即可證明出他們所對應的通式解。最後我的興趣鎖定在海倫三角形、完美海倫多邊形與超完美海倫多邊形上的做圖方法上,善用我們所發展的對應關係,上述的問題皆可迎刃而解。k(2αβ ,α2 ? β2,α2 + β2 ) is a popular formula in Pythagoras Theory, often proved in algebra approach among books. Nevertheless, in light of junior high students, the aforementioned algebra method is neither direct nor practical. Hence, a different thinking method is derived from geometry perspective, using the straight line concept to reinterpret Pythagoras Theory and define the geometric meanings of α andβ . In the process of logical development, a useful correlation emerges: a rational number correlates with a straight-angled triangle, and two rational numbers correlate with Heron Triangle. This correlation can be applied to all kinds of geometrical diagrams to prove the correlated homogenous solution. Ultimately, my interest lies in the diagram methods of Heron Triangle, Perfect Heron Polygon, and Super Perfect Heron Polygon in order to apply our developed correlations to solve the above mentioned problems.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」