本研究是[對於正n 邊形A1A2…An邊上一點P(含頂點),想像自定點P 朝鄰邊發出一條光線,若依逆(順)時針方向依序與每邊皆碰撞一次,經一圈而可回到P 點,則此路徑稱為「光圈」。過程試著追蹤在正n 邊形內能形成光圈的光線行進路徑及其相關問題。 本研究令,且以逆時針得光圈來討論: 1.根據[光的反射原理],探討光圈之存在性,發現除定點P 在正2m 邊形或正三角形的頂點外,其餘皆有光圈。 2.將可形成光圈的路徑圖展開成[直線路徑圖]來探討。 3.由[直線路徑圖],觀察到形成光圈的光線行進路徑,可能存在下列情況: (1)不通過正n 邊形的頂點,且產生路徑循環與不循環問題。 (2)通過正n 邊形的頂點。 4.發現正2m 邊形光圈皆為[完美光圈]。 5.發現正2m+1 邊形光圈之路徑與有理數、無理數之特質有關。即當s 值為有理數時,路徑會循環;當s 值為無理數時,路徑不循環。 The research is about [on Point P (including the angles) on the side of regular polygons A1、A2…An , imagine the light goes from Point P to the closest side, then bumps each side sequentially counterclockwise. After going a circle, it’s back to Point P. The track is called “the circle of light.” I try to trace the light track of the circle of light and other correlative questions.] In this research, we suppose,and we discuss the circle of light according counterclockwise direction:1.According to the light reflective principles, we discuss whether the circle of light exists or not. And then we discover that the circle of light really exists except when Point P is on the angles of regular triangle or regular 2m polygons. 2.Spread out the circle of light’s track to [rectilinear track.] 3.By [the picture of rectilinear track], observing there are two kinds of the circle of light’s track: (1)If the light doesn’t go through the angles of regular polygons, it can be a circulative track or a non-circulative track. (2)When the light goes through the angles, it stops. 4.We discover that all the circles of light in regular 2m polygons are [the perfect circles of light.] 5.We discover the circle of light’s track is correlative with rational numbers and irrantional numbers. When s is a rational number, the track is circulative, if s is a irrantional number, the track is not circulative.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」