Photochromism (from Greek φωζ photo “light” and χρωμα chroma “colour”) is determined as reversible transformation between two chemical species, induced by action of light [1]. Herewith, initial form and photoinduced isomer have different physical and chemical properties. The phenomenon is attractive for the design of hi-tech materials, including optical memory elements and molecular switches. Diarylethenes is the most promising class of organic photochromic compounds due to outstanding thermal stability of both isomers and high photostability [2]. The size of so-called ethene bridge significantly affects the photochromic reaction. The photochromic diarylethenes with 4-, 5-, and 6-membered cyclic ethene bridge are known, but there is no example with 3-membered bridge. In this study we report a new approach towards dithienylacetylenes 3 that include the synthesis of diarylcyclopropenones 2 via Friedel-Crafts alkylation of heterocyclic compounds 1 with tetrachlorocyclopropene and following UV-irradiation. It was found that the diarylethenes 2 do not display photochromic properties, but they undergo quantitative photoelimination of carbon monoxide upon UV-irradiation resulting in dithienylacetylene 3. Thus, we have proposed a new synthetic two-step approach to dithienylacetylenes 3 [3], which could be useful synthons in synthesis of photochromic diarylethenes with various ethene bridges.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」