Photochromism is determined as reversible transformation between two chemical species, induced by action of light [1]. Herewith, initial form and photoinduced isomer have different properties, first of all, spectral. The phenomenon is attractive for the design of hi-tech materials for different applications, including optical memory elements and molecular switches. Diarylethenes are the most promising class of organic photochromic compounds due to outstanding thermal stability of both isomers and high photostability [2, 3]. Photochromism of diarylethenes explained by reversible electrocyclic reaction of hexatriene system, provoked by UV light, back reaction is induced by visible light. In this work we have proposed a new class of photochromic diarylethenes with cyclohexenone ethene “bridge” 4. The key stage of the synthesis is “one-pot” reaction of ketoesters 1 and chalkones 2 in ethanol in the presence of sodium ethoxide that includes Michael reaction and subsequent intramolecular condensation of the resulting product. The final decarboxylation of semi-product 3 results in target diarylethenes 4. We have prepared a wide range of photochromic diarylethenes with thiophene, oxazole, imidazole and benzene derivatives as aryl moieties. The spectral characteristics of compounds obtained have also been discussed.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」