Riding around on a flat tire is no fun. It feels really bumpy. But a square wheel may be the ultimate flat tire. There's no way it can roll over a flat, smooth road without jolting the rider again and again. Here, I have constructed a bicycle with square wheels. It's a weird contraption, but you can ride it perfectly smoothly. My secret is the shape of the road over which the wheels roll. A square wheel can roll smoothly, keeping the axle moving in a straight line and at a constant velocity, if it travels over evenly spaced bumps of just the right shape. This special shape is called an inverted catenary. A catenary is the curve describing a rope or chain hanging loosely between two supports. Turn the curve upside down, and you get an inverted catenary--just like one of the bumps in my road. Make the road out of a whole bunch of those bumps all in a row, and you can take your square-wheeled bike for a quick spin. Just as a square rides smoothly across a roadbed of linked inverted catenaries, other regular polygons, including pentagons and hexagons, also ride smoothly over curves made up of appropriately selected pieces of inverted catenaries. As the number of a polygon's sides increases, these catenary segments get shorter and flatter. Ultimately, for an infinite number of sides (in effect, a circle), the curve becomes a straight, horizontal line. In the end, I conclude with possible enhancements in the project that might take us to a whole new world.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」