圓周上相異n個點,將圓周分割成n段弧,每次每個點沿逆時針方向變換成與下一點所成弧之中點,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?我們發現,m的最小值為n+2。更進一步發現,m的充要條件為m≧n+2且m≠kn-1, kn, kn+1,其中k為正奇數。接著,我們將問題一般化,圓周上相異n個點,沿逆時針方向變換成與下一點所成弧之p:q處,若某點經m次變換後回到初始點,則m的最小值以及m的所有可能值為何?我們發現,若p, q∈N,(p,q)=1,當變換次數r足夠大時,此n個點的位置會收斂至圓周上n等分點,同時,此n個點會在變換T=n(p+q)/(n,p)次後再次收斂至相同的位置。在這篇研究中,我們推導出任意點Pi變換r次後的點之位置坐標Ai(r)的一般式,不失一般性,我們針對P0求出A0(r)的最小極端值Lr與最大極端值Ur,在變換次數r足夠大時,透過觀察Lr與Ur對應到圓周上的收斂位置所形成的區間是否涵蓋原點,可預期P0變換r次後可否回歸。此外,我們也針對n個點具特殊初始位置座標來研究其回歸性質。
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」