臺灣國際科展

Beets Revolution

科展類別
臺灣國際科展作品
屆次
2016年
科別
環境工程
得獎情形
一等獎
學校名稱
The Chinese Foundation Secondary School
作者
Chan Nai To

摘要或動機

There is currently an interest in developing supercapacitors as the booming of smartphones and other mobile electric devices. Despite offering key performance advantages, many capacitors pose significant environmental hazards once disposed. They often contain fluorine, sulfur, toxic transition metal and cyanide groups, which are harmful if discarded by using conventional landfill or incineration methods. The objective of this project is to find an environmentally benign alternative for building various key components of supercapacitors structures. From the electrolyte, carbon substrate and materials corresponding for Faradic reaction, all the materials were devised from renewable biomass. In our research, two novel designs of betanin/sulfonated carbon supercapacitor and quinone/sulfonated carbon supercapacitor were invented. Betanin and quinone, extracted from beets and Sencha, was preloaded on the sulfonated carbon nanosphere as the composite. While sulfonated carbon nanosphere were fabricated by hydrothermal synthesis of renewable biomaterial, followed by surface functionalization - sulfonation for increasing the loading capacity of nanoparticle. Nanostructured morphology and surface functional groups were examined and confirmed by SEM and IR spectroscopy. Specific capacitance can be boosted up through optimizing the particle size, morphology and surface polarity of carbon substrate and the type of electrolyte. From the experimental result, it is believed that the nano-architecture, with active functional groups, of carbon nanosphere enables the efficient charge transport and electrode stability, allowing the composite with high capacitance (94–209 F g–1 at a current density ranging from 1 to 4 mA cm–2), high capacitance retention of over 90% after over 20,000 cycles respectively, and over a wide range of temperature. Superior electrochemical performance of both betanin/sulfonated and quinone/sulfonated carbon supercapacitor can be attributed to the large accessible surface area of the porous structure, low interfacial resistance and its structural stability. It shows that they have relatively higher tolerant towards heat and extreme pH mediums. The green electrochemical capacitor exhibits a promising capacitive performance of 209 F g–1 with high capacitance retention of over 90%, opening up new possibilities for the production of environmental friendly, cost efficient and lightweight energy storage system using renewable biomass as the basic building materials without harming the environment.


「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」

檔案名稱 檔案大小 格式
Beets Revolution 242 KB Adobe Reader(Pdf)檔案