- 科展類別
- 臺灣國際科展作品
- 屆次
- 2022年
- 科別
- 工程學
- 得獎情形
- 四等獎
- 學校名稱
- International School of Stavanger
- 指導老師
- Lynn Parker
- 作者
- Omkar Patil
- 關鍵字
- Angular velocity and power efficiency of twin bladed single rotor helicopter system
摘要或動機
A traditional helicopter requires 60 - 80% more power to hover than when in forward or lateral flight, making the manoeuvre extremely power inefficient. To maximise efficiency, industrially many properties of the helicopter and rotor have been changed and tested, for example: optimising blade shape, fuselage shape and changing weights of different helicopter components. This report in particular aims to find a relationship between power efficiency and angular velocity for a twin bladed hovering helicopter with a single rotor. The angular velocity of a blade measures the frequency of its revolution about a fixed point. A theoretical approach was first taken and then justified with empirical data. Firstly, a model for power efficiency was derived with William Froude’s momentum and blade element theory. The efficiency equations incorporated the thrust and power coefficients. Therefore, the research focused on determining values for these coefficients by manipulating equations, using industrial specifications and simulations from the XFOIL software. In order to validate the accuracy for such theoretically generated data, an experiment was conducted for a comparison. The theoretical and empirical data were concurrent, as they followed a similar trend and the empirical values overlapped within the theoretical error bars. The power efficiency for different angular velocities were then found by substituting values for the coefficients. The results demonstrated a positive relationship; where, as angular velocity increases, power efficiency increases too, then plateaus and repeats the same trend once again. The research raises many questions and could be extended by determining if a similar relationship exists for tri-copters and quadcopters.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及
提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式,
免費開源軟體可至LibreOffice
下載安裝使用,或依貴慣用的軟體開啟文件。」
檔案名稱 |
檔案大小 |
格式 |
100042.pdf |
3 MB |
|