資訊時代的來臨,促使我們的社會型態大幅改變,無一不朝數位化的方向邁進。網際網路與資訊科技的快速發展,近年來影像資料庫和數位圖書館大量的成立,關於影像資料檢索的研究已漸漸成為一門極為重要的研究議題。在本研究報告中,我們提出一種植基於向量量化編碼法的灰階影像檢索技術。向量量化編碼法是一種極為簡單的影像壓縮技術。我們應用這個編碼法,來萃取出灰階影像內容的特徵值。同時我們也計算出整張影像與影像中間位置的像素平均值,作為日後檢索影像時過濾掉影像資料庫中不需要比對特徵值的依據。\r我們所提出的方法能有效地萃取影像內容的特徵值並且讓使用者可以快速且正確地查詢到所需要的影像。當影像資料庫中存在與查詢影像完全相同的影像時,我們的檢索技術都能在第一時間第一順位檢索出這張影像。即便影像資料庫中不存在與查詢影像完全相同的影像時,我們的檢索技術平均74.3%也能在第一時間前五個順位檢索出最相似的影像。\r\rWith the coming of the information age, our sociological system change extensively, and everything has moves toward digitization. Due to the rapid development of Internet, information technology, the rapid growth of image databases and digital libraries recently, the related researches of image retrieval have become a very important issue. In this memoir, we propose an image retrieval scheme based on the vector quantization to retrieve similar images from the image database according to the pre-collected image features. Vector quantization is a very simple image compression scheme. We have applied vector quantization to extract features from grayscale image. In order to speed up the retrieval process, we also calculated the mean pixel values of whole images and the central part of the image to filter the images, which are significantly dissimilar to the query image.\rThe experimental results show that our proposed approaches can effectively extract features from the image and enable users to retrieve images from image database quickly and accurately. When images stored in image database match query image, the proposed scheme can instantly retrieve the stored image at the first rank. Even though images stored in image database query image exactly, the proposed scheme can instantly retrieve the stored image over 74.3% at the first five ranks.
「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」