臺灣國際科展

Deep learning on Covid-19 prediction and X-ray severity grading system

科展類別
臺灣國際科展作品
屆次
2021年
科別
電腦科學與資訊工程
學校名稱
臺北市立建國高級中學
指導老師
張瑞峰;王鼎中
作者
李昆樺
關鍵字
COVID-19、深度學習、分級系統

摘要或動機

利用深度學習解決醫學問題一直是受矚目的研究主題。鑒於近期新冠肺炎疫情上升,有關新冠肺炎檢測的研究便成了熱門研究主題。目前,最有效的檢測方法是聚合酶連鎖反應 (PCR),然而,PCR耗時甚久且有人為誤差。因此,以X光影像圖透過深度學習來診斷並分級是一個有效率且安全的做法。在研究中,我們利用深度學習進行疾病診斷,在五元分類上有相當高的準確率(84.91%)、在COVID-19單獨辨識時得到了極高的準確率(99.35%)、產生出疾病熱區及設計了新的分級系統( X-ray Severity Grading System , XSGS),並將其用於嚴重程度分類,在不同分級下具有可辨別的差異。


「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」

檔案名稱 檔案大小 格式
TISF2021-190022.pdf 1 MB Adobe Reader(Pdf)檔案