運用GAN實現字體風格轉換

科展類別
臺灣國際科展作品
屆次
2019年
科別
電腦科學與資訊工程
得獎情形
三等獎
學校名稱
臺北市立建國高級中學
指導老師
許雅淳
作者
邱泓翔
關鍵字
GAN,pix2pix,CycleGAN
備註
出國正選代表

摘要或動機

本研究以實作字體風格轉換的生成對抗網路模型為動機,將Conditional GAN當作模型的基礎,探討pix2pix模型及其他研究的一些方法對模型會產生甚麼影響,以得出能最優化預測成效的深度學習模型。 首先進行的是前處理的步驟,將字體的truetype檔案轉換成模型輸入的jpeg檔,再以生成器(Generator)和判別器(Discriminator)建立Condional GAN的基礎模型,然後探討加入U-Net、Category Embedding等方法,以及訓練資料集大小對模型造成的影響,最後實作整合的pix2pix模型和CycleGAN模型進行比較。 經過實驗後發現,U-Net和Category Embedding都對模型的預測成果有所幫助。另外,對相似的字體而言,pix2pix的效果較好,而對兩種風格差異較大的字體則需用Category Embedding的方式,融入更多字體進行訓練以達到更好的成效。


「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」

檔案名稱 檔案大小 格式
運用GAN實現字體風格轉換 3 MB Adobe Reader(Pdf)檔案