Algae Meets Fungi: Microalgae-Fungi Co-Pelletization for Biofuel Production

Burnaby North Secondary School
Claire Chu Scrimini;Vanessa Chu Scrimini
microbiology, biofuels, pollution


Microalgae-fungi biofuel has significantly less CO2 emissions than fossil fuels, making it much more environmentally friendly. As well, unlike traditional biofuel, microalgae-fungi does not require large masses of agricultural land for production. Thus, microalgae-fungi is an optimal option for biofuel production. This is a cost-effective renewable energy source that can be used in place of regular gas in cars and other means of transportation. By determining the most effective fungi for biofuel production, the threat of the impending environmental damage from pollution can be diminished. This novel experiment determines which fungi: Aspergillus niger, Rhizopus stolonifer or Saccharomyces cerevisiae, is the most effective bioflocculant in the microalgae-fungi co-pelletization process for biofuel production. We hypothesize that when paired with the microalgae Chlorella vulgaris, Rhizopus stolonifer will be the most effective. It has a high lipid content which could enhance the overall production of biofuel. Furthermore, its negative charge will aid with attracting and neutralizing the C. vulgaris colloidal particles resulting in an easier and more efficient removal of microalgae particles. Through the process of bioflocculation, pelletization, esterification and transesterification, the most effective fungi paired with C. vulgaris was determined. This experiment was carried out thoroughly and precisely resulting in a cost-effective solution for the world's current pollution crisis.

「為配合國家發展委員會「推動ODF-CNS15251為政府為文件標準格式實施計畫」,以及 提供使用者有文書軟體選擇的權利,本館檔案下載部分文件將公布ODF開放文件格式, 免費開源軟體可至LibreOffice 下載安裝使用,或依貴慣用的軟體開啟文件。」

檔案名稱 檔案大小 格式
070009.pdf 790 KB Adobe Reader(Pdf)檔案