泡麵為什麼總是彎的-136個廚房裡的科學謎題

資料來源
科學研習月刊57-10


白榮銓 /臺中市居仁國中退休教師
 
現代人不只喜愛享用美食,更想了解鍋具及食物的「物理性質與化學性質」,例如如何挑選鍋具、食品營養標示上脂肪(fat)含量的疑義、脂肪的性質以及對人體健康的影響。另外,人們還想進一步了解與烹飪相關的「物理變化與化學變化」,例如:加入「生馬鈴薯」(raw potato)是否能拯救一鍋較鹹的湯?梅納反應(Maillard reaction)與焦糖化(caramelization)對食物色澤及風味有何影響?

本書作者沃克(Robert Wolke, 1928-)是美國匹茲堡大學(University of Pittsburgh)榮譽化學教授,曾為《華盛頓郵報》(The Washington Post)撰寫「美食101」專欄(Food 101),長達10年,而且是多本暢銷科普書籍的作者。沃克曾獲得詹姆斯比爾德基金會(James Beard Foundation)最佳報紙專欄獎,以及國際烹飪專業人員協會博特葛林獎(International Association of Culinary Professionals ' Bert Greene Award)的最佳報紙飲食寫作獎。本書彙整了沃克回答餐廳大廚和《華盛頓郵報》專欄裡讀者詢問的一百多個問題,每一個問答單元都是獨立的,不需具備深奧的科學概念就能閱讀,有些主題是相互關連,有助於增進讀者的理解。

 為什麼吃剩的義大利麵,不要用鋁箔覆蓋?


《華盛頓郵報》「美食101」專欄的讀者提問:家中吃剩的義大利麵用鋁箔覆蓋,放入冰箱裡,當拿出來加熱時,發現鋁箔紙與義大利麵醬料接觸的地方,竟然出現小洞,為什麼?難道這是因為鋁箔,被番茄醬裡的檸檬酸與其他有機酸侵襲,還是另有其他原因?

只有裝剩菜的容器是金屬製(例如不鏽鋼鍋或不鏽鋼碗)的時候,番茄醬才會腐蝕蓋在上面的鋁箔,如果容器是玻璃或者塑膠製的,就不會發生這種情況。當鋁接觸到另一種金屬,以及番茄醬那樣會導電的物質,這三種物質的組合就構成了電池。腐蝕鋁箔不是單純的金屬與酸作用,而是電的作用,更精確地說,這是電解反應。

1780年,義大利的科學家賈法尼(Luigi Galvani, 1737-1798)在偶然的情況下,以銅製的解剖刀,碰到置於鐵盤內的青蛙,青蛙立刻發生抽搐現象,激發青蛙肌肉產生運動的力量,賈法尼稱之為「動物電」(animal electricity)。1791年,義大利的科學家伏打(Alessandro Volta, 1745-1827)認為這只是青蛙在兩種金屬之間傳導電流,他稱之為「金屬電」(metallic electricity)。1800年,伏打將含有濃食鹽水的濕布,夾在銀板與鋅板的中間,然後依照「銀→布→鋅→銀→布→鋅……」的順序,堆疊成一堆圓柱,最後以導線連接最上層的銀板,與最下層的鋅板,成功地製造出最早的化學電池,稱為「伏打堆」(voltaic pile,圖1)。

 
圖1. 伏打堆(圖片來源)


這可以解釋「為什麼鋁箔與番茄醬接觸的地方會出現小洞」,這是因為不鏽鋼碗的材質大部分是鐵,鐵和鋁具有不同的氧化活性,鋁的氧化活性大於鐵,所以有機會時,不鏽鋼碗的鐵原子,會從鋁箔搶走電子,而番茄醬正好提供路徑,使得電子從上方的鋁箔,轉移至下方的鐵碗。失去電子的鋁不再是金屬的鋁原子,它成為溶解在番茄醬裡的化合物,所以只有在番茄醬造成電子轉移可能發生的地方,才能看到鋁箔溶解。若將不鏽鋼碗,改為塑膠碗或玻璃碗,則覆蓋的鋁箔就不會因電解作用而產生小洞。

 厚重的煎鍋品質比較好?

《華盛頓郵報》「美食101」專欄的讀者提問:我想買高品質的多用途煎鍋(general purpose frying pan),但是市面上的產品種類繁多,我應該如何挑選?
理想的煎鍋應該具備底下的條件:
(1)爐火的熱可以均勻分布煎鍋表面,
(2)迅速傳熱到食物,
(3)對爐火的調整做出迅速反應。

這可以歸結到兩個性質--厚度與導熱性,亦即應該找尋較厚的、能夠高效率導熱的金屬鍋。如果把室溫下的食材,放進高溫的單薄煎鍋時,食材會從金屬吸收足夠的熱,使鍋子低於最佳烹飪溫度。除此之外,爐火的熱會在還沒擴散之前,就透過單薄煎鍋的底部抵達食物,造成食物的特定區域燒焦,但是厚重的煎鍋,卻能在這些變化的情況下,保持較穩定的烹飪溫度。

最關鍵的還是鍋子的導熱性,為什麼好的煎鍋必須具備高導熱率(thermal conductivity)?有三個原因,如下:
(1)煎鍋必須迅速有效地傳熱到食物,在傳熱很慢的玻璃或陶瓷鍋具,幾乎不適合煎炒食物;
(2)煎鍋的表面要處於相同溫度,即使爐火不均勻,高導熱的鍋底會迅速扯平這些不均勻性,讓食物受熱均勻;
(3)煎和爆炒需要不斷地保持食物處於特定溫度而不燒焦,所以必須時常調整爐火,而高導熱率金屬製造的煎鍋,幾乎能對爐火調整,很快地做出反應

煎鍋有不同的材質,例如銅,鋁和不鏽鋼,各自有其優點,可以透過層疊金屬(layering the metals)的技術加以組合,例如使用銅底(copper bottom)、鋁芯(aluminum core)以及不鏽鋼內部等三層,組合的煎鍋(圖2)。層疊金屬的鍋子,依不同的功能,有不同材質層的組合,例如底部是讓鍋子能用於電磁爐的磁性不鏽鋼(magnetic stainless steel exterior,圖3),中間是讓鍋子能迅速改變溫度的鋁和銅,最上面是能幫助鍋子具有抗腐蝕與抗氧化的「18/10不鏽鋼」(18/10指的是18%鉻,10%鎳)。
 
圖2. 三層組合的煎鍋(圖片來源)

 
圖3. 五層組合的湯鍋(圖片來源)

 焦糖化與梅納反應有何異同?

《華盛頓郵報》「美食101」專欄的讀者提問:食譜要我把洋蔥焦糖化,焦糖化就是將食物加熱至呈現焦褐狀態嗎?

食品因加熱或氧化等化學作用,所引起之褐色,稱為「褐變反應」(browning reaction),例如焦糖化與梅納反應。醣類在無胺基化合物(amino compound)的情況下,被加熱到攝氏約一百多度,就會融成液體,若繼續加熱,顏色就會由黃色,變成淺褐色及深褐色,這就是焦糖化。焦糖化是只含有糖,不含蛋白質的食物,被加熱至焦褐狀態,它包括了化學家尚未完全瞭解的一連串複雜的化學反應。

食譜裡的焦糖洋蔥(caramelized onions,圖4),可以不用加糖下去炒,但是洋蔥經久炒之後,水分蒸發,洋蔥會由透明轉變為褐色,嘗起來味道非常甜美。雖然洋蔥確實含有醣類,烹煮時有助於產生金黃色澤與甜味,故存在焦糖化反應。但是焦糖洋蔥發生的褐變反應,主要還是來自加熱蛋白質與還原糖(reducing sugar,例葡萄糖、果糖)所致,嚴格的說,焦糖洋蔥並不是「焦糖化」。

圖4. 焦糖洋蔥(圖片來源)

梅納反應是指食物中的碳水化合物與蛋白質,受熱至攝氏120度以上的高溫時,所發生的一系列複雜反應。反應過程中,會產生許多風味十足但無法辨識的化合物,這些物質為食品提供了可口的風味和誘人的色澤(圖5)。1912年,法國化學家梅納(Louis Camille Maillard, 1878-1936)曾定性描述它的初步反應,故後來的科學家,將這個反應命名為梅納反應。梅納反應將美好的風味賦予微焦的、含有碳水化合物與蛋白質的食物,例如呈現焦褐色燒烤過的肉(牛肉、豬肉、鮭魚與雞肉)與焦糖洋蔥等。

圖5. 焦褐色的牛排(圖片來源)

 馬鈴薯拯救了一鍋湯?

《華盛頓郵報》「美食101」專欄的讀者提問:煮湯時,我不小心放了太多的鹽,有沒有補救辦法?聽說生馬鈴薯可以吸收過多的鹽分?

幾乎每個人都聽過這種說法:「煮湯時,不小心加了太多食鹽,可以放幾塊生馬鈴薯進去煮,它們會吸收一部分的鹽,這樣就可以挽救一鍋美味的湯」(圖6),和許多時常聽到的偏方一樣,大多沒有經過科學測試。本書作者準備了兩鍋(實驗組和對照組)添加食鹽的水,做為「模擬湯樣本」(mock soup sample)。由於很多的食譜都是從4夸脫(quart)的湯,加1茶匙(teaspoonful)的鹽開始,一邊品嚐,一邊加鹽,直到味道剛剛好為止,所以作者的一號樣本是每夸脫的水,溶解1茶匙的鹽;二號樣本是每夸脫的水,溶解1大匙(tablespoon,約等於3茶匙)的鹽。


圖6. 煮雞湯加入馬鈴薯測試(圖片來源)

這兩份「模擬湯樣本」的鹹度,分別是食譜一開始調理湯鹹度的4倍和12倍,然後將相同體積的湯樣本,分別裝在相同大小和材質的鍋子,同時置於相同的爐子上加熱,直到沸騰,最後分別加入6片1/4英寸厚(總表面積各為300平方公分)的生馬鈴薯,在蓋得很緊的鍋裡,繼續用小火煮20鐘,取出馬鈴薯,靜候兩鍋湯樣本冷卻。測試時使用馬鈴薯切片,而不是馬鈴薯塊,目的是使馬鈴薯與鹽水充份接觸,讓接觸面積達到最大。

本書作者和身為美食評論家的妻子馬琳(Marlene Parrish)品嚐馬鈴薯切片的鹹度,馬琳根本不知道馬鈴薯切片來自那一個樣本,品嚐結果:加一茶匙鹽,煮過的馬鈴薯味道是鹹的;加一大茶匙鹽,煮過的馬鈴薯味道更鹹,但這只是意味著煮過的馬鈴薯吸收了鹽水,但是馬鈴薯不見得會吸走水裡的鹽。「模擬湯樣本」的導電度測試結果:加入馬鈴薯燉煮之前,與之後的導電度,沒有檢測到差異(no detectable difference),即無論是每夸脫水溶解一茶匙鹽,或是每夸脫水加一大匙鹽,加馬鈴薯的處理方式應是無效的。

有意思的是,本書作者實驗發現:加入馬鈴薯燉煮之後的鹽水導電度,反而稍微高於沒有加馬鈴薯燉煮之後的鹽水導電度,這應是馬鈴薯的含鉀量較高所致。鉀的化合物與鈉的化合物一樣會導電,為了修正這個影響,本書作者將馬鈴薯燉煮的鹽水導電度,減掉馬鈴薯提供的導電度;並盡量將鍋蓋緊密蓋住,使用小火燉煮,雖然水分仍有可能從鍋裡蒸發,使得鹽水的導電度增加,但是在修正馬鈴薯提供的導電度之後,沒有發現水分蒸發帶來的影響,故本書作者的論證應是嚴密可信。

 為什麼食品標籤上的脂肪含量數值有誤差?

《華盛頓郵報》「美食101」專欄的讀者提問:為什麼食品營養標示的飽和脂肪(saturated fat)、單不飽和脂肪(monounsaturated fat)和多不飽和脂肪(polyunsaturated fat)的公克數,全部加總的含量,低於總脂肪(total fat)的公克數?是否有其他種類的脂肪沒有列出來?

不只美國食品的營養標示,有這樣讓消費者不解的現象,國內食品的營養標示也有類似的情況,以國產某廠牌的高纖蘇打餅乾為例,包裝盒上的營養標示(圖7)「脂肪4.1公克---飽和脂肪(酸)1.9公克、反式脂肪(酸)0公克」,為什麼兩者相加之後,小於脂肪4.1公克?飽和脂肪、單不飽和脂肪與多不飽和脂肪的含量總和,不是應該等於總脂肪含量?其實,脂肪分子包含兩大部份:甘油與脂肪酸(fatty acid),標示上的「總脂肪」公克數,是所有的「脂肪」分子,包括甘油的重量總和。但是標示上的「飽和脂肪」、「單不飽和脂肪」與「多不飽和脂肪」,只是「脂肪酸」的重量,甘油分子的重量並沒有列入,故加總之後,小於「總脂肪」的公克數。

圖7. 高纖蘇打餅乾的營養標示(圖片來源:白榮銓老師)

2018年4月,我國衛生福利部公告修正「包裝食品營養標示應遵行事項」,提到:飽和脂肪得以標示為「飽和脂肪」或「飽和脂肪酸」(saturated fatty acid),反式脂肪得以標示「反式脂肪」或是「反式脂肪酸」(trans fatty acid)。為什麼美國食品的營養標示是「脂肪」,而不標示「脂肪酸」?依據美國食品與藥物管理局(U.S. Food and Drug Administration, FDA)網頁的說法,有兩個可能原因:
(1)大眾只想知道脂肪裡面含有飽和與不飽和的相對分量,
(2)標籤上的空間極為有限,「脂肪酸」一詞占的空間比「脂肪」多。當時(2001年)的FDA網頁承認:因為沒有包括反式脂肪酸在內,營養標示還有更多含混之處。

常溫下液態植物油中的不飽和脂肪酸(unsaturated fatty acid)容易氧化、不耐長時間的高溫烹調,為了提高油的穩定度、延長保存期限、降低成本、以及改善食品口感,工業上將植物油以氫化(hydrogenated)加工處理,使其轉為半固態的形式,成為氫化油(hydrogenated oil)。如果氫化反應能夠完全進行,則會得到「完全氫化油」(fully hydrogenated oil,FHOs),但完全氫化的脂肪往往非常堅硬,應用價值低;因此市售的氫化油大多是「不完全氫化油」(partially hydrogenated oil, PHOs),不完全氫化油往往被用於食品加工過程,例如烘焙或油炸食物。

但是不完全氫化油,在加工過程會改變脂肪的分子結構,產生的反式脂肪,可能增加人體的發炎反應,而發炎反應正是動脈硬化、糖尿病及多種癌症的起因之一,不但會提高人體內的「壞膽固醇」(LDL)和三酸甘油脂,還會減少「好膽固醇」(HDL),被認為對心臟血管疾病的危害最大。

近年來,世界各國的健康意識抬頭,各國政府開始重視不完全氫化油,對人體健康產生的負面影響。2015年6月,美國FDA正式發布通知:未來除非經美國FDA許可之食品外,皆不允許使用不完全氫化油,以避免加工食品中含有人工反式脂肪,並給予食品業者三年時間調整因應此規定。2016年4月,我國衛生福利部發布訂定「食用氫化油之使用限制」,規定:「自2018年7月1日起(以標示之製造日期為準),食品中不得使用不完全氫化油」

 脂肪與脂肪酸相同嗎?

《華盛頓郵報》「美食101」專欄的讀者提問:當我閱讀有關「飽和脂肪」和「不飽和脂肪」的文章時,很多文章常常無預警地,從「脂肪」切換到「脂肪酸」,幾乎是在兩個「術語」(term)之間隨機來回,好像它們(脂肪、脂肪酸)是同一東西,它們是嗎?如果不是,它們有什麼不同?

在中文的一般用語,人們往往將常溫下,呈現液狀的食用「油脂」(oil and fat),稱作「油」(oil);而將常溫下,呈現固狀的食用油脂,稱作「脂肪」(fat)。大多數的油脂分子含有三個脂肪酸分子,三個脂肪酸與甘油會形成三酸甘油酯(triacylglycerol),油脂的主要成分是三酸甘油酯。脂肪酸是羧酸(carboxylic acid)家族的成員之一,就酸性而言,它們是很弱的酸。脂肪酸依含碳的數量,可分為短鏈(碳數4-6個)、中鏈(碳數8-12個)與長鏈(碳數大於或等於14個),脂肪酸有可能是飽和或不飽和,到底飽和脂肪酸與不飽和脂肪酸的結構,有何不同?

若脂肪酸分子的碳鏈所能結合的氫原子數,達到最大值,則這種脂肪酸被稱為「飽和脂肪酸」(圖8),例如硬脂酸(stearic acid);若脂肪酸分子的碳鏈某處,缺了一對氫原子,即分子中有一對雙鍵(double bond)存在,則這種脂肪酸稱為「單不飽和脂肪酸」(monounsaturated fatty acid),例如油酸(oleic acid);若脂肪酸分子的碳鏈,缺了兩對或更多對的氫原子,即分子中有兩對或更多對雙鍵存在,則這種脂肪酸稱為「多不飽和脂肪酸」(polyunsaturated fatty acid),例如亞麻油酸(linoleic acid)。


圖8. 飽和、單不飽和與多不飽和脂肪酸(圖片來源)

同一脂肪所含的脂肪酸分子,有可能全都屬於同一種類,也有可能是不同種類的組合。「飽和脂肪」是指飽和脂肪酸和甘油形成的脂肪,含有的脂肪酸分子中,沒有不飽和鍵(雙鍵);「單不飽和脂肪」是指含有的脂肪酸分子中,只有一個雙鍵;至於含有兩個雙鍵以上的,則稱為「多不飽和脂肪」。一般而言,比較短的分子鏈與比較少的飽和脂肪酸,形成比較軟的脂肪;比較長的分子鏈與較多的飽和脂肪酸,形成比較硬的脂肪。這是因為在不飽和的脂肪酸裡面,只要缺了一對氫原子(即有一對雙鍵存在),脂肪酸分子就有一個扭結(kink),於是脂肪分子不能緊密靠攏,以形成密實的結構,故這種脂肪就更像是液體而非固體。

因此,飽和脂肪酸成分比較低的植物脂肪,傾向於呈現液狀;飽和脂肪酸成分比較高的動物脂肪,傾向於呈現固狀。飽和脂肪酸與不飽和脂肪酸,各有優缺點,目前市售的食用油中,都含有不同比例的飽和脂肪酸、單不飽和脂肪酸、以及多不飽和脂肪酸等。攝食不飽和脂肪酸有助於降低血液中膽固醇的含量,減少心血管疾病的風險,但是多不飽和脂肪酸的化學性質不穩定,受到光線的照射或高溫影響時,容易加速氧化速率,故不飽和脂肪酸含量高的油,最好在室溫下保存,並避免陽光直接照射(圖9);高飽和脂肪酸的油脂較耐高溫,適合用於高溫油炸等烹調,但是攝取量多,容易使血液中的膽固醇值升高,造成血管硬化。


圖9. 橄欖油瓶上的脂肪含量標示(圖片來源:白榮銓老師)

綜合上述,吃剩的義大利麵,用鋁箔覆蓋,鋁箔上產生小洞,主要原因是發生電解作用;利用鋁、銅導熱快的特性,做為不同金屬夾層的材料,然後以不鏽鋼包覆外表,就能製成美觀實用、加熱效率佳的多層複合金鍋具;焦糖化與梅納反應,都是給食物添增美味的科學訣竅;馬鈴薯拯救了一鍋湯,看似可行,卻是錯誤的迷思;食品營養標示上的脂肪含量包含甘油,而脂肪項目下的只是飽和脂肪酸和不飽和脂肪酸,難怪加總後的數值,不等於脂肪總含量;不精準使用「油、油脂、脂肪和脂肪酸」等術語的文章與標示,常造成一般民眾混淆不清。至於書中還有那些廚房裡的科學謎題?背後的科學原理又是什麼?這些都有待您進一步的閱讀與思考!